diff --git a/Mathlib/Analysis/SpecialFunctions/JapaneseBracket.lean b/Mathlib/Analysis/SpecialFunctions/JapaneseBracket.lean index c3a00d8725ab3..94524e35ae847 100644 --- a/Mathlib/Analysis/SpecialFunctions/JapaneseBracket.lean +++ b/Mathlib/Analysis/SpecialFunctions/JapaneseBracket.lean @@ -146,7 +146,8 @@ theorem integrable_one_add_norm [MeasureSpace E] [BorelSpace E] [(@volume E _).I -- Lower Lebesgue integral have : (∫⁻ a : E, ‖(1 + ‖a‖) ^ (-r)‖₊) = ∫⁻ a : E, ENNReal.ofReal ((1 + ‖a‖) ^ (-r)) := lintegral_nnnorm_eq_of_nonneg fun _ => rpow_nonneg (by positivity) _ - rw [HasFiniteIntegral, this] + unfold HasFiniteIntegral + rw [this] exact finite_integral_one_add_norm hnr #align integrable_one_add_norm integrable_one_add_norm diff --git a/Mathlib/MeasureTheory/Function/L1Space.lean b/Mathlib/MeasureTheory/Function/L1Space.lean index 29ad3435d2a72..b1af1f90d8f07 100644 --- a/Mathlib/MeasureTheory/Function/L1Space.lean +++ b/Mathlib/MeasureTheory/Function/L1Space.lean @@ -107,13 +107,6 @@ def HasFiniteIntegral {_ : MeasurableSpace α} (f : α → β) (μ : Measure α (∫⁻ a, ‖f a‖₊ ∂μ) < ∞ #align measure_theory.has_finite_integral MeasureTheory.HasFiniteIntegral --- Porting note: TODO Delete this when leanprover/lean4#2243 is fixed. -theorem hasFiniteIntegral_def {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) : - HasFiniteIntegral f μ ↔ ((∫⁻ a, ‖f a‖₊ ∂μ) < ∞) := - Iff.rfl - -attribute [eqns hasFiniteIntegral_def] HasFiniteIntegral - theorem hasFiniteIntegral_iff_norm (f : α → β) : HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal ‖f a‖ ∂μ) < ∞ := by simp only [HasFiniteIntegral, ofReal_norm_eq_coe_nnnorm] @@ -126,7 +119,7 @@ theorem hasFiniteIntegral_iff_edist (f : α → β) : theorem hasFiniteIntegral_iff_ofReal {f : α → ℝ} (h : 0 ≤ᵐ[μ] f) : HasFiniteIntegral f μ ↔ (∫⁻ a, ENNReal.ofReal (f a) ∂μ) < ∞ := by - rw [HasFiniteIntegral, lintegral_nnnorm_eq_of_ae_nonneg h] + simp only [HasFiniteIntegral, lintegral_nnnorm_eq_of_ae_nonneg h] #align measure_theory.has_finite_integral_iff_of_real MeasureTheory.hasFiniteIntegral_iff_ofReal theorem hasFiniteIntegral_iff_ofNNReal {f : α → ℝ≥0} : @@ -252,10 +245,7 @@ theorem hasFiniteIntegral_neg_iff {f : α → β} : HasFiniteIntegral (-f) μ theorem HasFiniteIntegral.norm {f : α → β} (hfi : HasFiniteIntegral f μ) : HasFiniteIntegral (fun a => ‖f a‖) μ := by - have eq : (fun a => (nnnorm ‖f a‖ : ℝ≥0∞)) = fun a => (‖f a‖₊ : ℝ≥0∞) := by - funext - rw [nnnorm_norm] - rwa [HasFiniteIntegral, eq] + simpa only [HasFiniteIntegral, nnnorm_norm] #align measure_theory.has_finite_integral.norm MeasureTheory.HasFiniteIntegral.norm theorem hasFiniteIntegral_norm_iff (f : α → β) : @@ -443,13 +433,6 @@ def Integrable {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α := AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ #align measure_theory.integrable MeasureTheory.Integrable --- Porting note: TODO Delete this when leanprover/lean4#2243 is fixed. -theorem integrable_def {α} {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) : - Integrable f μ ↔ (AEStronglyMeasurable f μ ∧ HasFiniteIntegral f μ) := - Iff.rfl - -attribute [eqns integrable_def] Integrable - theorem memℒp_one_iff_integrable {f : α → β} : Memℒp f 1 μ ↔ Integrable f μ := by simp_rw [Integrable, HasFiniteIntegral, Memℒp, snorm_one_eq_lintegral_nnnorm] #align measure_theory.mem_ℒp_one_iff_integrable MeasureTheory.memℒp_one_iff_integrable @@ -499,7 +482,7 @@ theorem integrable_congr {f g : α → β} (h : f =ᵐ[μ] g) : Integrable f μ theorem integrable_const_iff {c : β} : Integrable (fun _ : α => c) μ ↔ c = 0 ∨ μ univ < ∞ := by have : AEStronglyMeasurable (fun _ : α => c) μ := aestronglyMeasurable_const - rw [Integrable, and_iff_right this, hasFiniteIntegral_const_iff] + simp only [Integrable, and_iff_right this, hasFiniteIntegral_const_iff] #align measure_theory.integrable_const_iff MeasureTheory.integrable_const_iff @[simp] @@ -1215,7 +1198,8 @@ variable {H : Type*} [NormedAddCommGroup H] {m0 : MeasurableSpace α} {μ' : Mea theorem Integrable.trim (hm : m ≤ m0) (hf_int : Integrable f μ') (hf : StronglyMeasurable[m] f) : Integrable f (μ'.trim hm) := by refine' ⟨hf.aestronglyMeasurable, _⟩ - rw [HasFiniteIntegral, lintegral_trim hm _] + unfold HasFiniteIntegral + rw [lintegral_trim hm _] · exact hf_int.2 · exact @StronglyMeasurable.ennnorm _ m _ _ f hf #align measure_theory.integrable.trim MeasureTheory.Integrable.trim @@ -1224,7 +1208,7 @@ theorem integrable_of_integrable_trim (hm : m ≤ m0) (hf_int : Integrable f (μ Integrable f μ' := by obtain ⟨hf_meas_ae, hf⟩ := hf_int refine' ⟨aestronglyMeasurable_of_aestronglyMeasurable_trim hm hf_meas_ae, _⟩ - rw [HasFiniteIntegral] at hf ⊢ + unfold HasFiniteIntegral at hf ⊢ rwa [lintegral_trim_ae hm _] at hf exact AEStronglyMeasurable.ennnorm hf_meas_ae #align measure_theory.integrable_of_integrable_trim MeasureTheory.integrable_of_integrable_trim diff --git a/Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean b/Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean index 26a7f44928a34..97c2b7a336f5c 100644 --- a/Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean +++ b/Mathlib/MeasureTheory/Integral/BoundedContinuousFunction.lean @@ -91,7 +91,8 @@ lemma lintegral_nnnorm_le (f : X →ᵇ E) : lemma integrable [IsFiniteMeasure μ] (f : X →ᵇ E) : Integrable f μ := by - refine ⟨f.continuous.measurable.aestronglyMeasurable, (hasFiniteIntegral_def _ _).mp ?_⟩ + refine ⟨f.continuous.measurable.aestronglyMeasurable, ?_⟩ + unfold HasFiniteIntegral calc ∫⁻ x, ‖f x‖₊ ∂μ _ ≤ ‖f‖₊ * (μ Set.univ) := f.lintegral_nnnorm_le μ _ < ∞ := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top μ Set.univ) diff --git a/Mathlib/MeasureTheory/Integral/SetIntegral.lean b/Mathlib/MeasureTheory/Integral/SetIntegral.lean index 4e32b791cb71f..da6967fd9049b 100644 --- a/Mathlib/MeasureTheory/Integral/SetIntegral.lean +++ b/Mathlib/MeasureTheory/Integral/SetIntegral.lean @@ -1284,7 +1284,7 @@ theorem integral_withDensity_eq_integral_smul {f : α → ℝ≥0} (f_meas : Mea · exact integral_nonneg fun x => NNReal.coe_nonneg _ · refine' ⟨f_meas.coe_nnreal_real.aemeasurable.aestronglyMeasurable, _⟩ rw [withDensity_apply _ s_meas] at hs - rw [HasFiniteIntegral] + unfold HasFiniteIntegral convert hs with x simp only [NNReal.nnnorm_eq] · intro u u' _ u_int u'_int h h' diff --git a/Mathlib/Probability/Density.lean b/Mathlib/Probability/Density.lean index 5dbe67cfb73df..5b011f65871f3 100644 --- a/Mathlib/Probability/Density.lean +++ b/Mathlib/Probability/Density.lean @@ -326,7 +326,7 @@ theorem integral_mul_eq_integral [HasPDF X ℙ] : ∫ x, x * (pdf X ℙ volume x theorem hasFiniteIntegral_mul {f : ℝ → ℝ} {g : ℝ → ℝ≥0∞} (hg : pdf X ℙ =ᵐ[volume] g) (hgi : ∫⁻ x, ‖f x‖₊ * g x ≠ ∞) : HasFiniteIntegral fun x => f x * (pdf X ℙ volume x).toReal := by - rw [HasFiniteIntegral] + unfold HasFiniteIntegral have : (fun x => ↑‖f x‖₊ * g x) =ᵐ[volume] fun x => ‖f x * (pdf X ℙ volume x).toReal‖₊ := by refine' ae_eq_trans (Filter.EventuallyEq.mul (ae_eq_refl fun x => (‖f x‖₊ : ℝ≥0∞)) (ae_eq_trans hg.symm ofReal_toReal_ae_eq.symm)) _ diff --git a/Mathlib/Probability/Kernel/CondDistrib.lean b/Mathlib/Probability/Kernel/CondDistrib.lean index 3cbd488e58506..30f73cc7ab144 100644 --- a/Mathlib/Probability/Kernel/CondDistrib.lean +++ b/Mathlib/Probability/Kernel/CondDistrib.lean @@ -322,7 +322,8 @@ theorem _root_.MeasureTheory.Integrable.comp_snd_map_prod_mk by_cases hX : AEMeasurable X μ · have hf := hf_int.1.comp_snd_map_prod_mk X (mΩ := mΩ) (mβ := mβ) refine' ⟨hf, _⟩ - rw [HasFiniteIntegral, lintegral_map' hf.ennnorm (hX.prod_mk aemeasurable_id)] + unfold HasFiniteIntegral + rw [lintegral_map' hf.ennnorm (hX.prod_mk aemeasurable_id)] exact hf_int.2 · rw [Measure.map_of_not_aemeasurable] · simp