@@ -17,7 +17,7 @@ attribute [local instance 2000] Algebra.toModule Module.toDistribMulAction AddMo
17
17
Semiring.toNonUnitalSemiring NonUnitalSemiring.toNonUnitalNonAssocSemiring
18
18
NonUnitalNonAssocSemiring.toAddCommMonoid NonUnitalNonAssocSemiring.toMulZeroClass
19
19
MulZeroClass.toMul Submodule.idemSemiring IdemSemiring.toSemiring
20
- Submodule.instIdemCommSemiringSubmoduleToSemiringToAddCommMonoidToNonUnitalNonAssocSemiringToNonAssocSemiringToSemiringToModule
20
+ Submodule.instIdemCommSemiring
21
21
IdemCommSemiring.toCommSemiring CommSemiring.toCommMonoid
22
22
23
23
set_option quotPrecheck false
@@ -80,7 +80,7 @@ lemma div_zeta_sub_one_sub (η₁ η₂) (hη : η₁ ≠ η₂) :
80
80
ring
81
81
apply Associated.mul_left
82
82
apply hζ.unit'_coe.associated_sub_one hpri.out η₁.prop η₂.prop
83
- rw [Ne.def , ← Subtype.ext_iff.not]
83
+ rw [Ne, ← Subtype.ext_iff.not]
84
84
exact hη
85
85
86
86
set_option synthInstance.maxHeartbeats 40000 in
@@ -98,7 +98,7 @@ lemma div_zeta_sub_one_Injective :
98
98
instance : Finite (𝓞 K ⧸ 𝔭) := by
99
99
haveI : Fact (Nat.Prime p) := hpri
100
100
letI := IsCyclotomicExtension.numberField {p} ℚ K
101
- rw [← Ideal.absNorm_ne_zero_iff, Ne.def , Ideal.absNorm_eq_zero_iff, Ideal.span_singleton_eq_bot]
101
+ rw [← Ideal.absNorm_ne_zero_iff, Ne, Ideal.absNorm_eq_zero_iff, Ideal.span_singleton_eq_bot]
102
102
exact hζ.unit'_coe.sub_one_ne_zero hpri.out.one_lt
103
103
104
104
lemma div_zeta_sub_one_Bijective :
@@ -155,14 +155,14 @@ lemma m_mul_c_mul_p : 𝔪 * 𝔠 η * 𝔭 = 𝔦 η := by
155
155
156
156
set_option synthInstance.maxHeartbeats 40000 in
157
157
lemma m_ne_zero : 𝔪 ≠ 0 := by
158
- simp_rw [Ne.def , gcd_eq_zero_iff, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
158
+ simp_rw [Ne, gcd_eq_zero_iff, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
159
159
rintro ⟨rfl, rfl⟩
160
160
exact hy (dvd_zero _)
161
161
162
162
set_option synthInstance.maxHeartbeats 40000 in
163
163
lemma p_ne_zero : 𝔭 ≠ 0 := by
164
164
letI := IsCyclotomicExtension.numberField {p} ℚ K
165
- rw [Ne.def , Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
165
+ rw [Ne, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
166
166
exact hζ.unit'_coe.sub_one_ne_zero hpri.out.one_lt
167
167
168
168
lemma coprime_c_aux (η₁ η₂ : nthRootsFinset p (𝓞 K)) (hη : η₁ ≠ η₂) : (𝔦 η₁) ⊔ (𝔦 η₂) ∣ 𝔪 * 𝔭 := by
@@ -232,7 +232,7 @@ lemma prod_c : ∏ η in Finset.attach (nthRootsFinset p (𝓞 K)), 𝔠 η = (
232
232
233
233
lemma exists_ideal_pow_eq_c : ∃ I : Ideal (𝓞 K), (𝔠 η) = I ^ (p : ℕ) := by
234
234
letI inst1 : @IsDomain (Ideal (𝓞 K)) CommSemiring.toSemiring := @Ideal.isDomain (𝓞 K) _ _
235
- letI inst2 := @Ideal.instNormalizedGCDMonoidIdealToSemiringToCommSemiringCancelCommMonoidWithZero (𝓞 K) _ _
235
+ letI inst2 := @Ideal.instNormalizedGCDMonoid (𝓞 K) _ _
236
236
letI inst3 := @NormalizedGCDMonoid.toGCDMonoid _ _ inst2
237
237
exact @Finset.exists_eq_pow_of_mul_eq_pow_of_coprime (nthRootsFinset p (𝓞 K)) (Ideal (𝓞 K)) _
238
238
(by convert inst1) (by convert inst3) _ _ _ _ _
@@ -401,7 +401,7 @@ lemma a_mul_denom_eq_a_zero_mul_num (hη : η ≠ η₀) :
401
401
apply not_p_div_a_zero hp hζ e hy hz
402
402
rw [ha]
403
403
exact dvd_zero _
404
- · rw [Ne.def , FractionalIdeal.spanSingleton_eq_zero_iff, ← (algebraMap (𝓞 K) K).map_zero,
404
+ · rw [Ne, FractionalIdeal.spanSingleton_eq_zero_iff, ← (algebraMap (𝓞 K) K).map_zero,
405
405
(IsFractionRing.injective (𝓞 K) K).eq_iff]
406
406
intro hβ
407
407
apply a_div_a_zero_denom_spec hp hreg hζ e hy hz η hη
@@ -469,20 +469,20 @@ lemma exists_solution :
469
469
have hη₁ : η₁ ≠ η₀ := by
470
470
rw [← Subtype.coe_injective.ne_iff]
471
471
show (η₀ * hζ.unit' : 𝓞 K) ≠ η₀
472
- rw [Ne.def , mul_right_eq_self₀, not_or]
472
+ rw [Ne, mul_right_eq_self₀, not_or]
473
473
exact ⟨hζ.unit'_coe.ne_one hpri.out.one_lt,
474
474
ne_zero_of_mem_nthRootsFinset (η₀ : _).prop⟩
475
475
have hη₂ : η₂ ≠ η₀ := by
476
476
rw [← Subtype.coe_injective.ne_iff]
477
477
show (η₀ * hζ.unit' * hζ.unit' : 𝓞 K) ≠ η₀
478
- rw [Ne.def , mul_assoc, ← pow_two, mul_right_eq_self₀, not_or]
478
+ rw [Ne, mul_assoc, ← pow_two, mul_right_eq_self₀, not_or]
479
479
exact ⟨hζ.unit'_coe.pow_ne_one_of_pos_of_lt zero_lt_two
480
480
(hpri.out.two_le.lt_or_eq.resolve_right (PNat.coe_injective.ne hp.symm)),
481
481
ne_zero_of_mem_nthRootsFinset (η₀ : _).prop⟩
482
482
have hη : η₂ ≠ η₁ := by
483
483
rw [← Subtype.coe_injective.ne_iff]
484
484
show (η₀ * hζ.unit' * hζ.unit' : 𝓞 K) ≠ η₀ * hζ.unit'
485
- rw [Ne.def , mul_right_eq_self₀, not_or]
485
+ rw [Ne, mul_right_eq_self₀, not_or]
486
486
exact ⟨hζ.unit'_coe.ne_one hpri.out.one_lt,
487
487
mul_ne_zero (ne_zero_of_mem_nthRootsFinset (η₀ : _).prop)
488
488
(hζ.unit'_coe.ne_zero hpri.out.ne_zero)⟩
0 commit comments