-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFltThree.lean
704 lines (676 loc) · 26.9 KB
/
FltThree.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/-
Copyright (c) 2020 Ruben Van de Velde. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
-/
import FltRegular.FltThree.Primes
import FltRegular.FltThree.Edwards
import Mathlib.Data.Int.GCD
import Mathlib.NumberTheory.FLT.Basic
import Mathlib.Tactic.IntervalCases
/-- solutions to Fermat's last theorem for the exponent `3`. -/
def FltSolution (n : ℕ) (a b c : ℤ) :=
a ≠ 0 ∧ b ≠ 0 ∧ c ≠ 0 ∧ a ^ n + b ^ n = c ^ n
/-- Coprime solutions to Fermat's last theorem for the exponent `3`. -/
def FltCoprime (n : ℕ) (a b c : ℤ) :=
FltSolution n a b c ∧ IsCoprime a b ∧ IsCoprime a c ∧ IsCoprime b c
theorem exists_coprime {n : ℕ} (hn : 0 < n) {a b c : ℤ} (ha' : a ≠ 0) (hb' : b ≠ 0) (hc' : c ≠ 0)
(h : a ^ n + b ^ n = c ^ n) :
∃ a' b' c' : ℤ,
a'.natAbs ≤ a.natAbs ∧ b'.natAbs ≤ b.natAbs ∧ c'.natAbs ≤ c.natAbs ∧ FltCoprime n a' b' c' :=
by
set d := Int.gcd a b with hd'
obtain ⟨A, HA⟩ : ↑d ∣ a := @Int.gcd_dvd_left a b
obtain ⟨B, HB⟩ : ↑d ∣ b := @Int.gcd_dvd_right a b
obtain ⟨C, HC⟩ : ↑d ∣ c :=
by
rw [← Int.pow_dvd_pow_iff hn, ← h, HA, HB, mul_pow, mul_pow, ← mul_add]
exact dvd_mul_right _ _
have hdpos : 0 < d := Int.gcd_pos_of_ne_zero_left _ ha'
have hd := Int.natCast_ne_zero_iff_pos.mpr hdpos
have hsoln : A ^ n + B ^ n = C ^ n :=
by
apply Int.eq_of_mul_eq_mul_left (pow_ne_zero n hd)
simp only [mul_add, ← mul_pow, ← HA, ← HB, ← HC, h]
have hsoln' : B ^ n + A ^ n = C ^ n := by rwa [add_comm] at hsoln
have hcoprime : IsCoprime A B :=
by
rw [← Int.gcd_eq_one_iff_coprime]
apply Nat.eq_of_mul_eq_mul_left hdpos
rw [← Int.natAbs_ofNat d, ← Int.gcd_mul_left, ← HA, ← HB, hd', Int.natAbs_ofNat, mul_one]
have HA' : A.natAbs ≤ a.natAbs := by
rw [HA]
simp only [Int.natAbs_ofNat, Int.natAbs_mul]
exact le_mul_of_one_le_left' (Nat.succ_le_iff.mpr hdpos)
have HB' : B.natAbs ≤ b.natAbs := by
rw [HB]
simp only [Int.natAbs_ofNat, Int.natAbs_mul]
exact le_mul_of_one_le_left' (Nat.succ_le_iff.mpr hdpos)
have HC' : C.natAbs ≤ c.natAbs := by
rw [HC]
simp only [Int.natAbs_ofNat, Int.natAbs_mul]
exact le_mul_of_one_le_left' (Nat.succ_le_iff.mpr hdpos)
exact
⟨A, B, C, HA', HB', HC',
⟨right_ne_zero_of_mul (by rwa [HA] at ha'), right_ne_zero_of_mul (by rwa [HB] at hb'),
right_ne_zero_of_mul (by rwa [HC] at hc'), hsoln⟩,
hcoprime, coprime_add_self_pow hn hsoln hcoprime,
coprime_add_self_pow hn hsoln' hcoprime.symm⟩
theorem descent1a {a b c : ℤ} (h : a ^ 3 + b ^ 3 = c ^ 3) (habcoprime : IsCoprime a b)
(haccoprime : IsCoprime a c) (hbccoprime : IsCoprime b c) :
(Even a ∧ ¬Even b ∧ ¬Even c ∨ ¬Even a ∧ Even b ∧ ¬Even c) ∨ ¬Even a ∧ ¬Even b ∧ Even c :=
by
have contra : ∀ {x y : ℤ}, IsCoprime x y → Even x → Even y → False :=
by
intro x y hcoprime hx hy
rw [even_iff_two_dvd] at hx hy
have := Int.isUnit_eq_one_or (hcoprime.isUnit_of_dvd' hx hy)
norm_num at this
by_cases haparity : Even a <;> by_cases hbparity : Even b <;> by_cases hcparity : Even c
· exact False.elim (contra habcoprime ‹_› ‹_›)
· exact False.elim (contra habcoprime ‹_› ‹_›)
· exact False.elim (contra haccoprime ‹_› ‹_›)
· tauto
· exact False.elim (contra hbccoprime ‹_› ‹_›)
· tauto
· tauto
· exfalso
apply hcparity
rw [← Int.even_pow' three_ne_zero, ← h]
simp [haparity, hbparity, three_ne_zero, parity_simps]
theorem flt_not_add_self {a b c : ℤ} (ha : a ≠ 0) (h : a ^ 3 + b ^ 3 = c ^ 3) : a ≠ b :=
by
rintro rfl
rw [← mul_two] at h
obtain ⟨d, rfl⟩ : a ∣ c :=
by
rw [← Int.pow_dvd_pow_iff (by norm_num : 0 < 3), ← h]
apply dvd_mul_right
apply Int.two_not_cube d
rwa [mul_pow, mul_right_inj' (pow_ne_zero 3 ha), eq_comm] at h
theorem descent1left {a b c : ℤ} (hapos : a ≠ 0) (h : a ^ 3 + b ^ 3 = c ^ 3)
(hbccoprime : IsCoprime b c) (hb : ¬Even b) (hc : ¬Even c) :
∃ p q : ℤ,
p ≠ 0 ∧ q ≠ 0 ∧ IsCoprime p q ∧ (Even p ↔ ¬Even q) ∧ 2 * p * (p ^ 2 + 3 * q ^ 2) = a ^ 3 :=
by
obtain ⟨p, hp⟩ : Even (c - b) := by simp [hb, hc, parity_simps]
obtain ⟨q, hq⟩ : Even (c + b) := by simp [hb, hc, parity_simps]
rw [← two_mul] at hp hq
obtain rfl : p + q = c := by
apply Int.eq_of_mul_eq_mul_left two_ne_zero
rw [mul_add, ← hp, ← hq]
ring
obtain rfl : q - p = b := by
apply Int.eq_of_mul_eq_mul_left two_ne_zero
rw [mul_sub, ← hp, ← hq]
ring
have hpnezero : p ≠ 0 := by
rintro rfl
rw [sub_zero, zero_add, add_left_eq_self] at h
exact hapos (pow_eq_zero h)
have hqnezero : q ≠ 0 := by
rintro rfl
rw [zero_sub, add_zero, Odd.neg_pow (by norm_num; decide), ← sub_eq_add_neg,
sub_eq_iff_eq_add] at h
exact flt_not_add_self hpnezero h.symm rfl
refine' ⟨p, q, hpnezero, hqnezero, _, _, _⟩
· apply isCoprime_of_dvd _ _ (not_and_of_not_left _ hpnezero)
rintro z hznu - hzp hzq
apply hznu
exact hbccoprime.isUnit_of_dvd' (dvd_sub hzq hzp) (dvd_add hzp hzq)
· constructor <;> intro H <;> simpa [H, parity_simps] using hc
· rw [eq_sub_of_add_eq h]
ring
theorem descent1 (a b c : ℤ) (h : FltCoprime 3 a b c) :
∃ p q : ℤ,
p ≠ 0 ∧
q ≠ 0 ∧
IsCoprime p q ∧
(Even p ↔ ¬Even q) ∧
(2 * p * (p ^ 2 + 3 * q ^ 2) = a ^ 3 ∨
2 * p * (p ^ 2 + 3 * q ^ 2) = b ^ 3 ∨ 2 * p * (p ^ 2 + 3 * q ^ 2) = c ^ 3) :=
by
obtain ⟨⟨hapos, hbpos, hcpos, h⟩, habcoprime, haccoprime, hbccoprime⟩ := h
obtain (⟨-, hb, hc⟩ | ⟨ha, hb, hc⟩) | ⟨ha, hb, -⟩ :=
descent1a h habcoprime haccoprime hbccoprime
· obtain ⟨p, q, hp, hq, hcoprime, hodd, hcube⟩ := descent1left hapos h hbccoprime hb hc
exact ⟨p, q, hp, hq, hcoprime, hodd, Or.inl hcube⟩
· rw [add_comm] at h
obtain ⟨p, q, hp, hq, hcoprime, hodd, hcube⟩ := descent1left hbpos h haccoprime ha hc
refine' ⟨p, q, hp, hq, hcoprime, hodd, Or.inr <| Or.inl hcube⟩
· have := descent1left hcpos ?_ habcoprime.neg_left ?_ hb
obtain ⟨p, q, hp, hq, hcoprime, hodd, hcube⟩ := this
exact ⟨p, q, hp, hq, hcoprime, hodd, Or.inr <| Or.inr hcube⟩
· rw [← h]
ring
· simp [ha, parity_simps]
theorem descent11 {a b c d : ℤ} (h : d = a ∨ d = b ∨ d = c) : d ∣ a * b * c :=
by
rcases h with (rfl | rfl | rfl)
· exact (dvd_mul_right _ _).mul_right _
· exact (dvd_mul_left _ _).mul_right _
· exact dvd_mul_left _ _
theorem descent2 (a b c : ℤ) (h : FltCoprime 3 a b c) :
∃ p q : ℤ,
p ≠ 0 ∧
q ≠ 0 ∧
IsCoprime p q ∧
(Even p ↔ ¬Even q) ∧
(2 * p * (p ^ 2 + 3 * q ^ 2) = a ^ 3 ∨
2 * p * (p ^ 2 + 3 * q ^ 2) = b ^ 3 ∨ 2 * p * (p ^ 2 + 3 * q ^ 2) = c ^ 3) ∧
(2 * p).natAbs < (a ^ 3 * b ^ 3 * c ^ 3).natAbs :=
by
obtain ⟨p, q, hp, hq, hcoprime, hodd, hcube⟩ := descent1 a b c h
refine' ⟨p, q, hp, hq, hcoprime, hodd, hcube, _⟩
obtain ⟨⟨hapos, hbpos, hcpos, -⟩, -⟩ := h
set P : ℤ√(-3) := ⟨p, q⟩
apply lt_of_lt_of_le (b := (2 * p * P.norm).natAbs)
-- calc
-- (2 * p).natAbs < (2 * p * P.norm).natAbs := ?_
-- _ ≤ (a ^ 3 * b ^ 3 * c ^ 3).natAbs := ?_
· rw [Int.natAbs_mul (2 * p)]
apply lt_mul_of_one_lt_right (Int.natAbs_pos.mpr (mul_ne_zero two_ne_zero hp))
rw [← Int.ofNat_lt]
rw [Int.natAbs_of_nonneg (Zsqrtd.norm_nonneg (by norm_num) P)]
exact Spts.one_lt_of_im_ne_zero ⟨p, q⟩ hq
· apply Nat.le_of_dvd
· rw [pos_iff_ne_zero, Int.natAbs_ne_zero, ← mul_pow, ← mul_pow]
exact pow_ne_zero 3 (mul_ne_zero (mul_ne_zero hapos hbpos) hcpos)
· rw [Int.natAbs_dvd_natAbs]
convert descent11 hcube
rw [Zsqrtd.norm]
ring
theorem Nat.cast_three [AddMonoidWithOne R] : ((3 : ℕ) : R) = (3 : R) := rfl
theorem gcd1or3 (p q : ℤ) (hp : p ≠ 0) (hcoprime : IsCoprime p q) (hparity : Even p ↔ ¬Even q) :
Int.gcd (2 * p) (p ^ 2 + 3 * q ^ 2) = 1 ∨ Int.gcd (2 * p) (p ^ 2 + 3 * q ^ 2) = 3 :=
by
set g := Int.gcd (2 * p) (p ^ 2 + 3 * q ^ 2) with hg'
suffices H : ∃ k, g = 3 ^ k ∧ k < 2 by
obtain ⟨k, hg, hk⟩ := H
interval_cases k
· left
rw [pow_zero] at hg
exact hg
· right
rw [pow_one] at hg
exact hg
have basic : ∀ f, Nat.Prime f → (f : ℤ) ∣ 2 * p → (f : ℤ) ∣ p ^ 2 + 3 * q ^ 2 → f = 3 :=
by
intro d hdprime hdleft hdright
by_contra hne3
rw [← Ne.def] at hne3
apply (Nat.prime_iff_prime_int.mp hdprime).not_unit
have hne2 : d ≠ 2 := by
rintro rfl
rw [Nat.cast_two, ← even_iff_two_dvd] at hdright
have : ¬ Even (3 : ℤ) := by decide
simp [this, hparity, two_ne_zero, parity_simps] at hdright
have : 2 < d := lt_of_le_of_ne hdprime.two_le hne2.symm
have : 3 < d := lt_of_le_of_ne this hne3.symm
obtain ⟨P, hP⟩ := hdleft
obtain ⟨Q, hQ⟩ := hdright
obtain ⟨H, hH⟩ : 2 ∣ P := by
have H := dvd_mul_right 2 p
rw [hP] at H
apply (Prime.dvd_or_dvd Int.prime_two H).resolve_left
rw [Int.dvd_natCast]
change ¬2 ∣ d
rw [Nat.prime_dvd_prime_iff_eq Nat.prime_two hdprime]
exact hne2.symm
have hp : p = d * H := by rw [← mul_right_inj' (two_ne_zero' ℤ), hP, hH, mul_left_comm]
apply hcoprime.isUnit_of_dvd'
· rw [hp]
exact dvd_mul_right _ _
· have h000 : d ∣ 3 * q.natAbs ^ 2 :=
by
rw [← Int.natCast_dvd_natCast, Int.ofNat_mul, Int.coe_nat_pow, Int.natAbs_sq, Nat.cast_three]
use Q - d * H ^ 2
rw [mul_sub, ← hQ, hp]
ring
cases' (Nat.Prime.dvd_mul hdprime).mp h000 with h000 h000
· rw [Nat.prime_dvd_prime_iff_eq hdprime Nat.prime_three] at h000
exact absurd h000 hne3
· rw [Int.natCast_dvd]
exact Nat.Prime.dvd_of_dvd_pow hdprime h000
set k := g.factors.length
have hg : g = 3 ^ k := by
apply Nat.eq_prime_pow_of_unique_prime_dvd
· apply ne_of_gt
apply Nat.gcd_pos_of_pos_left
rw [Int.natAbs_mul]
apply mul_pos zero_lt_two
rwa [pos_iff_ne_zero, Int.natAbs_ne_zero]
intro d hdprime hddvdg
rw [← Int.natCast_dvd_natCast] at hddvdg
apply basic _ hdprime <;> apply dvd_trans hddvdg <;> rw [hg']
exacts[Int.gcd_dvd_left, Int.gcd_dvd_right]
refine' ⟨k, hg, _⟩
by_contra! H
rw [← pow_mul_pow_sub _ H] at hg
have : ¬IsUnit (3 : ℤ) := by
rw [Int.isUnit_iff_natAbs_eq]
norm_num
apply this
have hdvdp : 3 ∣ p :=
by
suffices 3 ∣ 2 * p
by
apply Int.dvd_mul_cancel_prime' _ dvd_rfl Int.prime_two this
norm_num
have : 3 ∣ (g : ℤ) := by
rw [hg, pow_two, mul_assoc, Int.ofNat_mul]
apply dvd_mul_right
exact dvd_trans this Int.gcd_dvd_left
apply IsCoprime.isUnit_of_dvd' hcoprime hdvdp
· rw [← Int.pow_dvd_pow_iff zero_lt_two] at hdvdp
apply Prime.dvd_of_dvd_pow Int.prime_three
rw [← mul_dvd_mul_iff_left (three_ne_zero' ℤ), ← pow_two, ← dvd_add_right hdvdp]
refine' dvd_trans _ Int.gcd_dvd_right
rw [← hg', hg, Int.ofNat_mul]
apply dvd_mul_right
theorem obscure' (p q : ℤ) (hp : p ≠ 0) (hcoprime : IsCoprime p q) (hparity : Even p ↔ ¬Even q)
(hcube : ∃ r, p ^ 2 + 3 * q ^ 2 = r ^ 3) :
∃ a b,
p = a * (a - 3 * b) * (a + 3 * b) ∧
q = 3 * b * (a - b) * (a + b) ∧ IsCoprime a b ∧ (Even a ↔ ¬Even b) :=
by
obtain ⟨u, hu⟩ := hcube
obtain ⟨a, b, hp', hq'⟩ := step6 p q u hcoprime hu.symm
refine' ⟨a, b, _, _, _, _⟩
· rw [hp']
ring
· rw [hq']
ring
· apply isCoprime_of_dvd
· rintro ⟨rfl, rfl⟩
norm_num at hp'
contradiction
rintro k hknu - hkdvdleft hkdvdright
apply hknu
apply hcoprime.isUnit_of_dvd'
· rw [hp']
apply dvd_sub
· exact dvd_pow hkdvdleft (by norm_num)
· rw [mul_comm (9 : ℤ), mul_assoc]
exact hkdvdleft.mul_right _
· rw [hq']
apply dvd_sub
· exact hkdvdright.mul_left _
· exact (hkdvdright.pow (by norm_num)).mul_left _
·
by_cases haparity : Even a <;> by_cases hbparity : Even b <;> [skip; tauto; tauto; skip] <;>
· exfalso
have : Even p := by
rw [hp']
have : ¬ Even (9 : ℤ) := by decide
simp [this, haparity, hbparity, three_ne_zero, parity_simps]
have : Even q := by
rw [hq']
simp [haparity, hbparity, three_ne_zero, parity_simps]
tauto
theorem Int.eq_pow_of_mul_eq_pow_odd {a b c : ℤ} (hab : IsCoprime a b) {k : ℕ} (hk : Odd k)
(h : a * b = c ^ k) : (∃ d, a = d ^ k) ∧ ∃ e, b = e ^ k := by
obtain ⟨k, rfl⟩ := hk.exists_bit1
exact Int.eq_pow_of_mul_eq_pow_bit1 hab h
theorem Int.cube_of_coprime (a b c s : ℤ) (ha : a ≠ 0) (hb : b ≠ 0) (hc : c ≠ 0)
(hcoprimeab : IsCoprime a b) (hcoprimeac : IsCoprime a c) (hcoprimebc : IsCoprime b c)
(hs : a * b * c = s ^ 3) : ∃ A B C, A ≠ 0 ∧ B ≠ 0 ∧ C ≠ 0 ∧ a = A ^ 3 ∧ b = B ^ 3 ∧ c = C ^ 3 :=
by
have : Odd 3 := by decide
obtain ⟨⟨AB, HAB⟩, ⟨C, HC⟩⟩ :=
Int.eq_pow_of_mul_eq_pow_odd (IsCoprime.mul_left hcoprimeac hcoprimebc) this hs
obtain ⟨⟨A, HA⟩, ⟨B, HB⟩⟩ := Int.eq_pow_of_mul_eq_pow_odd hcoprimeab this HAB
refine' ⟨A, B, C, _, _, _, HA, HB, HC⟩ <;> apply ne_zero_pow three_ne_zero
· rwa [← HA]
· rwa [← HB]
· rwa [← HC]
theorem Int.gcd1_coprime12 (u v : ℤ) (huvcoprime : IsCoprime u v) (notdvd_2_2 : ¬2 ∣ u - 3 * v)
(not_3_dvd_2 : ¬3 ∣ u - 3 * v) : IsCoprime (2 * u) (u - 3 * v) :=
by
apply isCoprime_of_prime_dvd
· rintro ⟨-, h2⟩
rw [h2] at notdvd_2_2
norm_num at notdvd_2_2
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
apply huvcoprime.isUnit_of_dvd'
· exact Int.dvd_mul_cancel_prime' notdvd_2_2 hkdvdright Int.prime_two hkdvdleft
· apply Int.dvd_mul_cancel_prime' not_3_dvd_2 hkdvdright Int.prime_three
apply Int.dvd_mul_cancel_prime' notdvd_2_2 hkdvdright Int.prime_two
convert dvd_sub hkdvdleft (hkdvdright.mul_left 2) using 1
ring
theorem Int.gcd1_coprime13 (u v : ℤ) (huvcoprime : IsCoprime u v) (this' : ¬Even (u + 3 * v))
(notdvd_3_3 : ¬3 ∣ u + 3 * v) : IsCoprime (2 * u) (u + 3 * v) :=
by
rw [even_iff_two_dvd] at this'
apply isCoprime_of_prime_dvd
· rintro ⟨-, h2⟩
rw [h2] at this'
norm_num at this'
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
apply huvcoprime.isUnit_of_dvd'
· exact Int.dvd_mul_cancel_prime' this' hkdvdright Int.prime_two hkdvdleft
· apply Int.dvd_mul_cancel_prime' notdvd_3_3 hkdvdright Int.prime_three
apply Int.dvd_mul_cancel_prime' this' hkdvdright Int.prime_two
convert dvd_sub (hkdvdright.mul_left 2) hkdvdleft using 1
ring
theorem Int.gcd1_coprime23 (u v : ℤ) (huvcoprime : IsCoprime u v) (notdvd_2_2 : ¬2 ∣ u - 3 * v)
(notdvd_3_3 : ¬3 ∣ u + 3 * v) : IsCoprime (u - 3 * v) (u + 3 * v) :=
by
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
rw [h1] at notdvd_2_2
norm_num at notdvd_2_2
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
apply huvcoprime.isUnit_of_dvd'
· apply Int.dvd_mul_cancel_prime' notdvd_2_2 hkdvdleft Int.prime_two
convert dvd_add hkdvdleft hkdvdright using 1
ring
· apply Int.dvd_mul_cancel_prime' notdvd_3_3 hkdvdright Int.prime_three
apply Int.dvd_mul_cancel_prime' notdvd_2_2 hkdvdleft Int.prime_two
convert dvd_sub hkdvdright hkdvdleft using 1
ring
theorem descent_gcd1 (a b c p q : ℤ) (hp : p ≠ 0) (hcoprime : IsCoprime p q)
(hodd : Even p ↔ ¬Even q)
(hcube :
2 * p * (p ^ 2 + 3 * q ^ 2) = a ^ 3 ∨
2 * p * (p ^ 2 + 3 * q ^ 2) = b ^ 3 ∨ 2 * p * (p ^ 2 + 3 * q ^ 2) = c ^ 3)
(hgcd : IsCoprime (2 * p) (p ^ 2 + 3 * q ^ 2)) :
∃ a' b' c' : ℤ,
a' ≠ 0 ∧
b' ≠ 0 ∧
c' ≠ 0 ∧ (a' ^ 3 * b' ^ 3 * c' ^ 3).natAbs ≤ (2 * p).natAbs ∧ a' ^ 3 + b' ^ 3 = c' ^ 3 :=
by
-- 5.
obtain ⟨r, hr⟩ : ∃ r, 2 * p * (p ^ 2 + 3 * q ^ 2) = r ^ 3 := by
rcases hcube with (hcube | hcube | hcube) <;> [(use a); (use b); (use c)]
have : Odd 3 := by decide
obtain ⟨hcubeleft, hcuberight⟩ := Int.eq_pow_of_mul_eq_pow_odd hgcd this hr
-- todo shadowing hq
obtain ⟨u, v, hpfactor, hq, huvcoprime, huvodd⟩ := obscure' p q hp hcoprime hodd hcuberight
have u_ne_zero : u ≠ 0 := by
rintro rfl
rw [MulZeroClass.zero_mul, MulZeroClass.zero_mul] at hpfactor
contradiction
have haaa : 2 * p = 2 * u * (u - 3 * v) * (u + 3 * v) :=
by
rw [hpfactor]
ring
have : ¬ Even (3 : ℤ) := by decide
have : ¬Even (u - 3 * v) := by simp [‹¬ Even (3 : ℤ)›, huvodd, parity_simps]
have : ¬Even (u + 3 * v) := by simp [‹¬ Even (3 : ℤ)›, huvodd, parity_simps]
have notdvd_2_2 : ¬2 ∣ u - 3 * v := by
rw [← even_iff_two_dvd]
exact ‹¬Even (u - 3 * v)›
have hddd : ¬3 ∣ p := by
intro H
have : 3 ∣ p ^ 2 + 3 * q ^ 2 := by
apply dvd_add
· rw [pow_two]
exact H.mul_left _
· apply dvd_mul_right
have : 3 ∣ 2 * p := H.mul_left 2
have := IsCoprime.isUnit_of_dvd' hgcd ‹_› ‹_›
rw [isUnit_iff_dvd_one] at this
norm_num at this
have not_3_dvd_2 : ¬3 ∣ u - 3 * v := by
intro hd2
apply hddd
rw [hpfactor]
exact (hd2.mul_left _).mul_right _
have notdvd_3_3 : ¬3 ∣ u + 3 * v := by
intro hd3
apply hddd
rw [hpfactor]
exact hd3.mul_left _
obtain ⟨s, hs⟩ := hcubeleft
obtain ⟨C, A, B, HCpos, HApos, HBpos, HC, HA, HB⟩ :
∃ X Y Z : ℤ, X ≠ 0 ∧ Y ≠ 0 ∧ Z ≠ 0 ∧ 2 * u = X ^ 3 ∧ u - 3 * v = Y ^ 3 ∧ u + 3 * v = Z ^ 3 :=
by
apply Int.cube_of_coprime (2 * u) (u - 3 * v) (u + 3 * v) s
· apply mul_ne_zero two_ne_zero u_ne_zero
· rw [sub_ne_zero]
rintro rfl
simp only [‹¬ Even (3 : ℤ)›, false_or_iff, iff_not_self, parity_simps] at huvodd
· intro H
rw [add_eq_zero_iff_eq_neg] at H
apply iff_not_self
simpa [‹¬ Even (3 : ℤ)›, H, parity_simps] using huvodd
· apply Int.gcd1_coprime12 u v <;> assumption
· apply Int.gcd1_coprime13 u v <;> assumption
· apply Int.gcd1_coprime23 u v <;> assumption
· rw [← haaa]
exact hs
refine' ⟨A, B, C, HApos, HBpos, HCpos, _, _⟩
· rw [mul_comm, ← mul_assoc (C ^ 3), ← HA, ← HB, ← HC, ← haaa]
· rw [← HA, ← HB, ← HC]
ring
theorem gcd3_coprime {u v : ℤ} (huvcoprime : IsCoprime u v) (huvodd : Even u ↔ ¬Even v) :
IsCoprime (2 * v) (u + v) ∧ IsCoprime (2 * v) (u - v) ∧ IsCoprime (u - v) (u + v) :=
by
have haddodd : ¬Even (u + v) := by simp [huvodd, parity_simps]
have hsubodd : ¬Even (u - v) := by simp [huvodd, parity_simps]
have haddcoprime : IsCoprime (u + v) (2 * v) := by
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
rw [h1] at haddodd
norm_num at haddodd
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
have hkdvdright' : k ∣ v := by
rw [even_iff_two_dvd] at haddodd
exact Int.dvd_mul_cancel_prime' haddodd hkdvdleft Int.prime_two hkdvdright
apply huvcoprime.isUnit_of_dvd' _ hkdvdright'
simpa using dvd_sub hkdvdleft hkdvdright'
have hsubcoprime : IsCoprime (u - v) (2 * v) := by
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
rw [h1] at hsubodd
norm_num at hsubodd
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
have hkdvdright' : k ∣ v := by
rw [even_iff_two_dvd] at hsubodd
exact Int.dvd_mul_cancel_prime' hsubodd hkdvdleft Int.prime_two hkdvdright
apply huvcoprime.isUnit_of_dvd' _ hkdvdright'
rw [← sub_add_cancel u v]
exact dvd_add hkdvdleft hkdvdright'
have haddsubcoprime : IsCoprime (u + v) (u - v) := by
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
rw [h1] at haddodd
norm_num at haddodd
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
rw [even_iff_two_dvd] at haddodd
apply huvcoprime.isUnit_of_dvd' <;>
apply Int.dvd_mul_cancel_prime' haddodd hkdvdleft Int.prime_two
· convert dvd_add hkdvdleft hkdvdright using 1
ring
· convert dvd_sub hkdvdleft hkdvdright using 1
ring
exact ⟨haddcoprime.symm, hsubcoprime.symm, haddsubcoprime.symm⟩
theorem descent_gcd3_coprime {q s : ℤ} (h3_ndvd_q : ¬3 ∣ q) (hspos : s ≠ 0)
(hcoprime' : IsCoprime s q) (hodd' : Even q ↔ ¬Even s) :
IsCoprime (3 ^ 2 * 2 * s) (q ^ 2 + 3 * s ^ 2) :=
by
have h2ndvd : ¬2 ∣ q ^ 2 + 3 * s ^ 2 :=
by
rw [← even_iff_two_dvd]
have : ¬ Even (3 : ℤ) := by decide
simp [this, two_ne_zero, hodd', parity_simps]
have h3ndvd : ¬3 ∣ q ^ 2 + 3 * s ^ 2 := by
intro H
apply h3_ndvd_q
rw [dvd_add_left (dvd_mul_right _ _)] at H
exact Prime.dvd_of_dvd_pow Int.prime_three H
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
rw [mul_eq_zero] at h1
exact hspos (h1.resolve_left (by norm_num))
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
have : k ∣ s := by
apply Int.dvd_mul_cancel_prime' h2ndvd hkdvdright Int.prime_two
apply Int.dvd_mul_cancel_prime' h3ndvd hkdvdright Int.prime_three
apply Int.dvd_mul_cancel_prime' h3ndvd hkdvdright Int.prime_three
convert hkdvdleft using 1
ring
apply hcoprime'.isUnit_of_dvd' this
apply hkprime.dvd_of_dvd_pow
rw [← dvd_add_left ((this.pow two_ne_zero).mul_left _)]
exact hkdvdright
theorem descent_gcd3 (a b c p q : ℤ) (hp : p ≠ 0) (hq : q ≠ 0) (hcoprime : IsCoprime p q)
(hodd : Even p ↔ ¬Even q)
(hcube :
2 * p * (p ^ 2 + 3 * q ^ 2) = a ^ 3 ∨
2 * p * (p ^ 2 + 3 * q ^ 2) = b ^ 3 ∨ 2 * p * (p ^ 2 + 3 * q ^ 2) = c ^ 3)
(hgcd : (2 * p).gcd (p ^ 2 + 3 * q ^ 2) = 3) :
∃ a' b' c' : ℤ,
a' ≠ 0 ∧
b' ≠ 0 ∧
c' ≠ 0 ∧ (a' ^ 3 * b' ^ 3 * c' ^ 3).natAbs ≤ (2 * p).natAbs ∧ a' ^ 3 + b' ^ 3 = c' ^ 3 :=
by
-- 1.
have h3_dvd_p : 3 ∣ p :=
by
apply Int.dvd_mul_cancel_prime' _ dvd_rfl Int.prime_two
· zify at hgcd
rw [← hgcd]
exact Int.gcd_dvd_left
· norm_num
have h3_ndvd_q : ¬3 ∣ q := by
intro H
have := hcoprime.isUnit_of_dvd' h3_dvd_p H
rw [Int.isUnit_iff_natAbs_eq] at this
norm_num at this
-- 2.
obtain ⟨s, rfl⟩ := h3_dvd_p
have hspos : s ≠ 0 := right_ne_zero_of_mul hp
have hps : 2 * (3 * s) * ((3 * s) ^ 2 + 3 * q ^ 2) = 3 ^ 2 * 2 * s * (q ^ 2 + 3 * s ^ 2) := by
ring
-- 3.
have hcoprime' : IsCoprime s q := by
apply isCoprime_of_prime_dvd
· rintro ⟨h1, -⟩
exact hspos h1
intro k hkprime hkdvdleft hkdvdright
apply hkprime.not_unit
apply hcoprime.isUnit_of_dvd' _ hkdvdright
exact hkdvdleft.mul_left 3
have hodd' : Even q ↔ ¬Even s :=
by
rw [Iff.comm, not_iff_comm, Iff.comm]
have : ¬ Even (3 : ℤ) := by decide
simpa [this, parity_simps] using hodd
have hcoprime'' : IsCoprime (3 ^ 2 * 2 * s) (q ^ 2 + 3 * s ^ 2) :=
descent_gcd3_coprime h3_ndvd_q hspos hcoprime' hodd'
-- 4.
obtain ⟨r, hr⟩ : ∃ r, 2 * (3 * s) * ((3 * s) ^ 2 + 3 * q ^ 2) = r ^ 3 := by
rcases hcube with (hcube | hcube | hcube) <;> [(use a); (use b); (use c)]
rw [hps] at hr
have : Odd 3 := by norm_num; decide
obtain ⟨hcubeleft, hcuberight⟩ := Int.eq_pow_of_mul_eq_pow_odd hcoprime'' this hr
-- 5.
-- todo shadows hq hq
obtain ⟨u, v, hq, hs, huvcoprime, huvodd⟩ := obscure' q s hq hcoprime'.symm hodd' hcuberight
have hv : v ≠ 0 := by
rintro rfl
norm_num at hs
contradiction
-- 6.
obtain ⟨haddcoprime, hsubcoprime, haddsubcoprime⟩ := gcd3_coprime huvcoprime huvodd
-- 7.
obtain ⟨e, he⟩ := hcubeleft
have : 3 ∣ e :=
by
rw [← Int.pow_dvd_pow_iff (by norm_num : 0 < 3), ← he, hs]
convert dvd_mul_right _ (2 * v * (u - v) * (u + v)) using 1
norm_num
ring
obtain ⟨t, rfl⟩ := this
have ht : 2 * v * (u - v) * (u + v) = t ^ 3 :=
by
have : (3 ^ 3 : ℤ) ≠ 0 := by norm_num
rw [← mul_right_inj' this, ← mul_pow, ← he, hs]
ring
obtain ⟨A, B, C, HApos, HBpos, HCpos, HA, HB, HC⟩ :
∃ X Y Z : ℤ, X ≠ 0 ∧ Y ≠ 0 ∧ Z ≠ 0 ∧ 2 * v = X ^ 3 ∧ u - v = Y ^ 3 ∧ u + v = Z ^ 3 :=
by
apply Int.cube_of_coprime
· exact mul_ne_zero two_ne_zero hv
· intro H
rw [sub_eq_zero] at H
apply iff_not_self
simpa [H, parity_simps] using huvodd
· intro H
rw [add_eq_zero_iff_eq_neg] at H
apply iff_not_self
simpa [H, parity_simps] using huvodd
· exact hsubcoprime
· exact haddcoprime
· exact haddsubcoprime
· exact ht
refine' ⟨A, B, C, HApos, HBpos, HCpos, _, _⟩
-- 9.
· rw [← mul_assoc, mul_comm, ← mul_assoc (C ^ 3), ← HA, ← HB, ← HC]
set x := v * (u - v) * (u + v) with hx
calc
((u + v) * (2 * v) * (u - v)).natAbs = (2 * x).natAbs :=
by
rw [hx]
congr 1
ring
_ = 2 * x.natAbs := by
rw [Int.natAbs_mul 2]
rfl
_ ≤ 3 * x.natAbs := (Nat.mul_le_mul_right _ (by norm_num))
_ = (3 * x).natAbs := by
rw [Int.natAbs_mul 3]
rfl
_ = s.natAbs := by
rw [hx, hs]
congr 1
ring
_ ≤ 2 * 3 * s.natAbs := (Nat.le_mul_of_pos_left _ (by norm_num))
_ = (2 * 3 * s).natAbs := by
rw [Int.natAbs_mul (2 * 3)]
rfl
· rw [← HA, ← HB, ← HC]
ring
theorem descent (a b c : ℤ) (h : FltCoprime 3 a b c) :
∃ a' b' c' : ℤ,
a' ≠ 0 ∧
b' ≠ 0 ∧ c' ≠ 0 ∧ (a' * b' * c').natAbs < (a * b * c).natAbs ∧ a' ^ 3 + b' ^ 3 = c' ^ 3 :=
by
-- 3.
have := descent2 a b c h
obtain ⟨p, q, hp, hq, hcoprime, hodd, hcube, haaa⟩ := this
suffices
∃ a' b' c' : ℤ,
a' ≠ 0 ∧
b' ≠ 0 ∧
c' ≠ 0 ∧ (a' ^ 3 * b' ^ 3 * c' ^ 3).natAbs ≤ (2 * p).natAbs ∧ a' ^ 3 + b' ^ 3 = c' ^ 3
by
obtain ⟨a', b', c', ha', hb', hc', hsmaller, hsolution⟩ := this
refine' ⟨a', b', c', ha', hb', hc', _, hsolution⟩
rw [← Nat.pow_lt_pow_iff_left three_ne_zero]
convert lt_of_le_of_lt hsmaller haaa <;> simp [mul_pow, Int.natAbs_mul, Int.natAbs_pow]
-- 4.
cases' gcd1or3 p q hp hcoprime hodd with hgcd hgcd
-- 5.
· rw [Int.gcd_eq_one_iff_coprime] at hgcd
apply descent_gcd1 a b c p q hp hcoprime hodd hcube hgcd
· apply descent_gcd3 a b c p q hp hq hcoprime hodd hcube hgcd
theorem flt_three : FermatLastTheoremWith ℤ 3 := by
intros a b c ha hb hc
induction' h : (a * b * c).natAbs using Nat.strong_induction_on with k' IH generalizing a b c
intro H
obtain ⟨x'', y'', z'', hxle, hyle, hzle, hcoprime⟩ := exists_coprime zero_lt_three ha hb hc H
obtain ⟨x', y', z', hx'pos, hy'pos, hz'pos, hsmaller, hsolution⟩ := descent x'' y'' z'' hcoprime
refine' IH (x' * y' * z').natAbs _ _ _ _ hx'pos hy'pos hz'pos rfl hsolution
apply lt_of_lt_of_le hsmaller
rw [← h]
simp only [Int.natAbs_mul]
exact Nat.mul_le_mul (Nat.mul_le_mul hxle hyle) hzle