-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
232 lines (202 loc) · 8.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python3
import argparse
import pprint
import torch
import time
from config import get_epl_configs, load_epl_configs, parse_config_arg
from two_step_zoo import (
get_single_module, get_two_step_module, get_trainer, get_single_trainer,
get_loaders_from_config, get_writer, get_evaluator, get_ood_evaluator
)
parser = argparse.ArgumentParser(description="Three Step Calo Challenge Density Estimator")
parser.add_argument("--dataset", type=str,
help="Dataset to train on. Required if load-dir not specified.")
parser.add_argument("--epl-model", type=str,
help="Model for density estimation of energies per layer, given incident energy. Required if load-dir not specified.")
parser.add_argument("--gae-model", type=str,
help="Model for generalized autoencoding. Required if load-dir not specified.")
parser.add_argument("--de-model", type=str,
help="Model for density estimation. Required if load-dir not specified.")
parser.add_argument("--load-dir", type=str, default="",
help="Directory to load from.")
parser.add_argument("--load-best-valid-first", action="store_true",
help="Attempt to load the best_valid checkpoint first.")
parser.add_argument("--load-pretrained-epl", action="store_true",
help="Load pretrained epl from resume-dir.")
parser.add_argument("--load-pretrained-gae", action="store_true",
help="Load pretrained gae from resume-dir.")
parser.add_argument("--freeze-pretrained-gae", action="store_true",
help="Freeze the parameters of the pretrained GAE, i.e. do not train them.")
parser.add_argument("--max-epochs-loaded", type=int,
help="New maximum shared epochs for loaded model.")
parser.add_argument("--max-epochs-loaded-epl", type=int,
help="New maximum epochs for loaded GAE model.")
parser.add_argument("--max-epochs-loaded-gae", type=int,
help="New maximum epochs for loaded GAE model.")
parser.add_argument("--max-epochs-loaded-de", type=int,
help="New maximum epochs for loaded DE model.")
parser.add_argument("--epl-config", default=[], action="append",
help="Override gae config entries. Specify as `key=value`.")
parser.add_argument("--gae-config", default=[], action="append",
help="Override gae config entries. Specify as `key=value`.")
parser.add_argument("--de-config", default=[], action="append",
help="Override de config entries. Specify as `key=value`.")
parser.add_argument("--shared-config", default=[], action="append",
help="Override shared config entries. Specify as `key=value`.")
parser.add_argument("--only-test", action="store_true",
help="Only perform a test, no training.")
parser.add_argument("--test-ood", action="store_true",
help="Perform an OOD test.")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.load_dir:
epl_cfg, gae_cfg, de_cfg, shared_cfg = load_epl_configs(
args=args,
density_estimator=args.de_model if args.de_model else None
)
if args.load_pretrained_epl:
# NOTE: When loading a pretrained EPL/GAE, we do not expect to load either de_cfg or shared_cfg
# NOTE: If GAE is to be loaded, the EPL model must also be loaded
if not args.load_pretrained_gae:
gae_cfg = {**gae_cfg, **dict(parse_config_arg(kv) for kv in args.gae_config)}
de_cfg = {**de_cfg, **dict(parse_config_arg(kv) for kv in args.de_config)}
shared_cfg = {**shared_cfg, **dict(parse_config_arg(kv) for kv in args.shared_config)}
else:
epl_cfg, gae_cfg, de_cfg, shared_cfg = get_epl_configs(
dataset=args.dataset,
epl_model=args.epl_model,
generalized_autoencoder=args.gae_model,
density_estimator=args.de_model
)
# Update configs with required fields for conditional EPL training
epl_cfg = {**epl_cfg, **dict(parse_config_arg(kv) for kv in args.epl_config)}
epl_cfg["dataset"] = epl_cfg["dataset"] + "-epl"
epl_cfg["make_valid_loader"] = shared_cfg["make_valid_loader"]
epl_cfg["train_batch_size"] = shared_cfg["train_batch_size"]
epl_cfg["valid_batch_size"] = shared_cfg["valid_batch_size"]
epl_cfg["test_batch_size"] = shared_cfg["test_batch_size"]
gae_cfg = {**gae_cfg, **dict(parse_config_arg(kv) for kv in args.gae_config)}
gae_cfg["conditional_on_epl"] = True # y of datasets will be (E_inc, EPL)
de_cfg = {**de_cfg, **dict(parse_config_arg(kv) for kv in args.de_config)}
de_cfg["data_dim"] = gae_cfg["latent_dim"]
de_cfg["conditional_on_epl"] = True
shared_cfg = {**shared_cfg, **dict(parse_config_arg(kv) for kv in args.shared_config)}
shared_cfg["conditional_on_epl"] = True
shared_cfg["metric_kwargs"].update({"conditional_on_epl": True})
pprint.sorted = lambda x, key=None: x
pp = pprint.PrettyPrinter(indent=4)
print(10*"-" + "-epl_cfg--" + 10*"-")
pp.pprint(epl_cfg)
print(10*"-" + "-gae_cfg--" + 10*"-")
pp.pprint(gae_cfg)
print(10*"-" + "--de_cfg--" + 10*"-")
pp.pprint(de_cfg)
print(10*"-" + "shared_cfg" + 10*"-")
pp.pprint(shared_cfg)
writer = get_writer(args, epl_cfg=epl_cfg, gae_cfg=gae_cfg, de_cfg=de_cfg, shared_cfg=shared_cfg)
# EPL training routine
epl_train_loader, epl_valid_loader, epl_test_loader = get_loaders_from_config(epl_cfg)
epl_module = get_single_module(
epl_cfg,
data_dim=epl_cfg["data_dim"],
data_shape=epl_cfg["data_shape"],
label_dim=epl_cfg["label_dim"],
train_dataset_size=epl_cfg["train_dataset_size"]
).to(device)
epl_evaluator = get_evaluator(
epl_module,
train_loader=epl_train_loader, valid_loader=epl_valid_loader, test_loader=epl_test_loader,
valid_metrics=epl_cfg["valid_metrics"],
test_metrics=epl_cfg["test_metrics"],
**epl_cfg.get("metric_kwargs", {}),
)
epl_trainer = get_single_trainer(
module=epl_module,
ckpt_prefix="epl",
writer=writer,
cfg=epl_cfg,
train_loader=epl_train_loader,
valid_loader=epl_valid_loader,
test_loader=epl_test_loader,
evaluator=epl_evaluator,
only_test=args.only_test,
)
checkpoint_load_list = ["latest", "best_valid"]
if args.load_best_valid_first: checkpoint_load_list = checkpoint_load_list[::-1]
for ckpt in checkpoint_load_list:
try:
epl_trainer.load_checkpoint(ckpt)
break
except FileNotFoundError:
print(f"Did not find {ckpt} epl checkpoint")
t0 = time.time()
epl_trainer.train(epl_step=True)
t1 = time.time()
print(f"Energy-per-layer model training time: {t1 - t0} seconds")
# Add epl_module and epl_cfg to configs so that they can be passed to metrics easily for sampling at test time
shared_cfg["epl_module"] = epl_module
shared_cfg["epl_cfg"] = epl_cfg
shared_cfg["metric_kwargs"].update({"epl_module": epl_module, "epl_cfg": epl_cfg})
# Two-step training routine
train_loader, valid_loader, test_loader = get_loaders_from_config(shared_cfg)
two_step_module = get_two_step_module(gae_cfg, de_cfg, shared_cfg).to(device)
gae_evaluator = get_evaluator(
two_step_module.generalized_autoencoder,
valid_loader=valid_loader,
test_loader=test_loader,
train_loader=train_loader,
valid_metrics=gae_cfg["valid_metrics"],
test_metrics=gae_cfg["test_metrics"],
**gae_cfg.get("metric_kwargs", {}),
)
de_evaluator = get_evaluator(
two_step_module.density_estimator,
valid_loader=None, test_loader=None, # Loaders must be updated later by the trainer
train_loader=train_loader,
valid_metrics=de_cfg["valid_metrics"],
test_metrics=de_cfg["test_metrics"],
**de_cfg.get("metric_kwargs", {}),
)
if args.test_ood or "likelihood_ood_acc" in shared_cfg["test_metrics"]:
shared_evaluator = get_ood_evaluator(
two_step_module,
cfg=shared_cfg,
include_low_dim=True,
valid_loader=valid_loader,
test_loader=test_loader,
train_loader=train_loader,
savedir=writer.logdir
)
else:
shared_evaluator = get_evaluator(
two_step_module,
train_loader=train_loader, valid_loader=valid_loader, test_loader=test_loader,
valid_metrics=shared_cfg["valid_metrics"],
test_metrics=shared_cfg["test_metrics"],
**shared_cfg.get("metric_kwargs", {}),
)
gae_evaluator.metric_kwargs.update({"epl_module": epl_module}) # For sampling with epl_module
de_evaluator.metric_kwargs.update({"epl_module": epl_module}) # For sampling with epl_module
shared_evaluator.metric_kwargs.update({"epl_module": epl_module})
shared_evaluator.metric_kwargs.update({"epl_cfg": epl_cfg})
trainer = get_trainer(
two_step_module=two_step_module,
writer=writer,
gae_cfg=gae_cfg,
de_cfg=de_cfg,
shared_cfg=shared_cfg,
train_loader=train_loader,
valid_loader=valid_loader,
test_loader=test_loader,
gae_evaluator=gae_evaluator,
de_evaluator=de_evaluator,
shared_evaluator=shared_evaluator,
load_best_valid_first=args.load_best_valid_first,
pretrained_gae_path=args.load_dir if args.load_pretrained_gae else "",
freeze_pretrained_gae=args.freeze_pretrained_gae if args.freeze_pretrained_gae else None,
only_test=args.only_test
)
t0 = time.time()
trainer.train()
t1 = time.time()
print(f"Two-step training time: {t1 - t0} seconds")