-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutilities.py
executable file
·416 lines (360 loc) · 15.7 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 19 11:40:32 2019
@author: thomas
"""
import numpy as np
import copy
import collections
import math
pi=math.pi
import scipy.interpolate
import matplotlib.pyplot as plt
import json
class NumpyEncoder(json.JSONEncoder):
""" Recursively converts numpy array into lists for JSON serialization """
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def JSONtoNumpy(dico, key_hist=''):
""" Recursively all list of floats (and list of list of floats) to numpy arrays in the input dictionnary """
# print(key_hist)
if isinstance(dico, dict):
for key in dico.keys():
dico[key] = JSONtoNumpy( dico[key], key_hist='.'.join( (key_hist, key) ) )
else:
if isinstance(dico, list):
if len(dico)>0:
if isinstance(dico[0], list) or isinstance(dico[0],dict):
for i in range(len(dico)):
dico[i] = JSONtoNumpy(dico[i], key_hist='.'.join( (key_hist, str(i))))
elif isinstance(dico[0], np.ndarray):
dico = np.array(dico)
elif isinstance(dico[0], float):
return np.array(dico)
return dico
import os, shutil
def copytree(src, dst, symlinks=False, ignore=None):
for item in os.listdir(src):
s = os.path.join(src, item)
d = os.path.join(dst, item)
if os.path.isdir(s):
shutil.copytree(s, d, symlinks, ignore)
else:
shutil.copy2(s, d)
### interacitive legends with mpld3
def interactive_legend2(ax=None, fig=None):
import mpld3
from mpld3 import plugins
np.random.seed(9615)
if ax is None:
ax = plt.gca()
if fig is None:
fig = plt.gcf()
handles, labels = ax.get_legend_handles_labels() # return lines and labels
interactive_legend_plug = plugins.InteractiveLegendPlugin(zip(handles,
ax.collections),
labels,
alpha_unsel=0.2,
alpha_over=1.5,
start_visible=True)
plugins.connect(fig, interactive_legend_plug)
def interactive_legend(ax=None):
if ax is None:
ax = plt.gca()
if ax.legend_ is None:
ax.legend()
return InteractiveLegend(ax.get_legend())
class InteractiveLegend(object):
### issu de Stackoverflow, marche moyen
def __init__(self, legend):
self.legend = legend
self.fig = legend.axes.figure
self.lookup_artist, self.lookup_handle = self._build_lookups(legend)
self._setup_connections()
self.update()
def _setup_connections(self):
for artist in self.legend.texts + self.legend.legendHandles:
artist.set_picker(10) # 10 points tolerance
self.fig.canvas.mpl_connect('pick_event', self.on_pick)
self.fig.canvas.mpl_connect('button_press_event', self.on_click)
def _build_lookups(self, legend):
labels = [t.get_text() for t in legend.texts]
handles = legend.legendHandles
label2handle = dict(zip(labels, handles))
handle2text = dict(zip(handles, legend.texts))
lookup_artist = {}
lookup_handle = {}
for artist in legend.axes.get_children():
if artist.get_label() in labels:
handle = label2handle[artist.get_label()]
lookup_handle[artist] = handle
lookup_artist[handle] = artist
lookup_artist[handle2text[handle]] = artist
lookup_handle.update(zip(handles, handles))
lookup_handle.update(zip(legend.texts, handles))
return lookup_artist, lookup_handle
def on_pick(self, event):
handle = event.artist
if handle in self.lookup_artist:
artist = self.lookup_artist[handle]
artist.set_visible(not artist.get_visible())
self.update()
def on_click(self, event):
if event.button == 3:
visible = False
elif event.button == 2:
visible = True
else:
return
for artist in self.lookup_artist.values():
artist.set_visible(visible)
self.update()
def update(self):
for artist in self.lookup_artist.values():
handle = self.lookup_handle[artist]
if artist.get_visible():
handle.set_visible(True)
else:
handle.set_visible(False)
self.fig.canvas.draw()
def show(self):
plt.show()
def sigmoid_arctan(x, x0, width, n=1, p=1):
# ancienne version
# temp = np.abs(((x-x0)/width)**n)
# return ( (np.arctan(temp)*2/pi*np.sign(x-x0)+1)/2 )**p
return (0.5*( 1 + np.arctan(((x-x0)/width)**n)*2/np.pi ))**p
def define_my_arctansigmoid(T2, T1):
# trouver les apramètres x0 et width tels que sigmoid_arctan(x=Tmax)=0.99
# et sigmoid_arctan(x=Tmin)=0.01
r1 = 0.01
r2 = 0.99
A1 = np.tan((r1-0.5)*np.pi/2)
A2 = np.tan((r2-0.5)*np.pi/2)
width = (T2-T1)/(A2-A1)
x0 = 0.5*(T2+T1-width*(A1+A2))
return width, x0
if __name__=='__main__':
width, x0 = define_my_arctansigmoid(3000,2000)
plt.figure()
testx = np.linspace(-100, 5000,1000)
# pltfun = plt.plot
pltfun = plt.semilogy
n=1
p=1
pltfun(testx, sigmoid_arctan(testx, x0=x0, width=width, n=n,p=p), label='fitted')
pltfun(testx, sigmoid_arctan(testx, x0=x0, width=0.1, n=1,p=1), label='codée')
# for w in np.logspace(-1,2,5):
# pltfun(testx, sigmoid_arctan(testx, x0=2500, width=w, n=n,p=p), label='w={:.2e}'.format(w))
plt.legend()
plt.title('test sigmoid arctan pout tfl cedre')
plt.figure()
testx = np.linspace(-100, 5000,1000)
pltfun = plt.semilogy
pltfun(testx, 1-sigmoid_arctan(testx, x0=x0, width=width, n=n,p=p), label='fitted')
pltfun(testx, 1-sigmoid_arctan(testx, x0=x0, width=0.1, n=1,p=1), label='codée')
for w in np.logspace(-1,2,5):
pltfun(testx, 1-sigmoid_arctan(testx, x0=2500, width=w, n=n,p=p), label='w={:.2e}'.format(w))
plt.legend()
plt.title('test 1 - sigmoid arctan pout tfl cedre')
plt.figure()
testx = np.linspace(-1,1,1000)
plt.plot(testx, sigmoid_arctan(testx,0,0.01), label='w=0.01')
plt.plot(testx, sigmoid_arctan(testx,0,0.1), label='w=0.1')
plt.plot(testx, sigmoid_arctan(testx,0,1.), label='w=1')
plt.legend()
plt.title('test sigmoid arctan')
# test de validité même quand très éloigné du centre de la transition
plt.figure()
testx = np.concatenate((-np.logspace(-1,5,1000)[::-1], np.logspace(-1,5,1000)))
plt.semilogx(np.abs(testx), sigmoid_arctan(testx,0,0.01), label='w=0.01')
plt.semilogx(np.abs(testx), sigmoid_arctan(testx,0,0.1), label='w=0.1')
plt.semilogx(np.abs(testx), sigmoid_arctan(testx,0,1.), label='w=1')
plt.legend()
plt.title('test sigmoid arctan')
plt.figure()
testx = np.linspace(490,510,1000)
widths = [10, 2., 0.5, 0.25, 1, 1e-1, 1e-2]
for width in widths:
plt.plot(testx, sigmoid_arctan(testx,500,width), label='w={}'.format(width))
plt.legend()
plt.title('test sigmoid arctan')
plt.figure()
testx = np.linspace(1e-5, 1e3)
widths = [10, 2., 0.5, 0.25, 1, 1e-1, 1e-2]
pltfun = plt.semilogx
for width in widths:
# pltfun(testx, np.exp(-1.0/sigmoid_arctan(testx,1e-3,width, n=1, p=2))**3, label='w={}'.format(width))
pltfun(testx, sigmoid_arctan(testx,1e-3,width, n=1, p=2), label='w={}'.format(width))
pltfun(testx, 1e-10*np.ones_like(testx), color=[0,0,0])
pltfun(testx, 1e0*np.ones_like(testx), color=[0,0,0])
plt.legend()
plt.title('test sigmoid arctan for mass flux')
def fastspy(A, ax, cmap='binary'):
""""
Parameters
----------
A : coo matrix
ax : axis
"""
m, n = A.shape
ax.hold(True)
ax.imshow(A,interpolation='none',cmap=cmap)
ax.colorbar()
if 0:
ax.scatter([i for i in range(np.size(A,1))],
[i for i in range(np.size(A,0))],
c=A.data, s=20, marker='s',
edgecolors='none', clip_on=False,
cmap=cmap)
ax.axis('off')
ax.axis('tight')
ax.invert_yaxis()
ax.hold(False)
def setupFiniteVolumeMesh(xfaces, meshoptions=None):
""" Setup 1D spatial mash for finite volume, based on the positions of the faces of each cell """
if meshoptions is None:
meshoptions={}
meshoptions['faceX'] = xfaces
meshoptions['cellX'] = 0.5*(xfaces[1:]+xfaces[0:-1]) # center of each cell
meshoptions['dxBetweenCellCenters'] = np.diff(meshoptions['cellX']) # gap between each consecutive cell-centers
meshoptions['cellSize'] = np.diff(xfaces) # size of each cells
assert not any(meshoptions['cellSize']==0.), 'some cells are of size 0...'
assert not any(meshoptions['cellSize']<0.), 'some cells are of negative size...'
assert not any(meshoptions['dxBetweenCellCenters']==0.), 'some cells have the same centers...'
assert np.max(meshoptions['cellSize'])/np.min(meshoptions['cellSize']) < 1e10, 'cell sizes extrema are too different'
# conveniency attributes for backward-compatibility wtih finite-difference results post-processing
meshoptions['x'] = meshoptions['cellX']
meshoptions['dx'] = meshoptions['dxBetweenCellCenters']
return meshoptions
def mergeDict(prioritary, other, level=0, genealogy='', checkType=True):
""" Recursively merge two dictionnaries, with precedance for the first one """
if level==0: #first call
out =copy.deepcopy(prioritary)
else:
out = prioritary
for key in other.keys():
if key not in prioritary.keys():
out[key] = other[key]
else:
#merge
if isinstance(other[key], collections.Mapping):
if isinstance(prioritary[key], collections.Mapping):
out[key] = mergeDict(prioritary[key], other[key], level=level+1, genealogy='{}.{}'.format(genealogy, key))
else:
raise Exception('Priortary dict has key {}.{} of type {}, whereas it is of type {} in the other one'.format(genealogy, key, type(prioritary[key]), type(other[key])))
else:
if checkType:
if type(other[key]) == type(prioritary[key]):
pass #out[key] = prioritary[key]
elif other[key]==None:
pass
else:
raise Exception('Priortary dict has key {}.{} of type {}, whereas it is of type {} in the other one'.format(genealogy, key, type(prioritary[key]), type(other[key])))
return out
def generateTimeVector(dictInputReference):
""" Generates the time vector for integration """
defaults = {'sCase': 'unsteady',
'unsteady': {'dt':1e-6, 't_f':1e-3},
'progressive':{
'dts': [1e-7, 1e-6, 1e-5], #successive time steps
'ntrelax': [ 100, 100], #number of transition time steps after the stabilization steps to transition from on dt to another
'nstab': [200, 100, 100], #number of time steps with fixed time steps for each separate dt provided
}}
dictInput = mergeDict(prioritary=dictInputReference, other=defaults)
if dictInput['sCase']=='unsteady':
dt=dictInput['unsteady']['dt']
time = np.arange(0.,dictInput['unsteady']['t_f'],dt)
elif dictInput['sCase']=='unsteadyProgressif' or dictInput['sCase']=='progressive':
dts = dictInput['progressive']['dts'] #successive time steps
ntrelax = dictInput['progressive']['ntrelax'] #number of transition time steps after the stabilization steps to transition from on dt to another
nstab = dictInput['progressive']['nstab'] #number of time steps with fixed time steps for each separate dt provided
time = [0.]
for i in range(len(dts)-1):
for j in range(nstab[i]):
time.append(time[-1] + dts[i])
for j in range(ntrelax[i]):
time.append(time[-1]+ (ntrelax[i]-j)/ntrelax[i]*dts[i] + j/ntrelax[i]*dts[i+1])
for j in range(nstab[-1]):
time.append(time[-1] + dts[-1])
time = np.array(time)
else:
raise Exception('unknown time stepping configuration "{}"'.format(dictInput['sCase']))
if 'globalScaling' in dictInputReference.keys(): # global scaling to easily reduce time step sizes
time = time*dictInputReference['globalScaling']
return time
#raise Exception('attention tu dois finir cette implémentation')
def interpExtrap1D(x, y, kind='linear'):
""" Interpolateur qui extrapole avec des valeurs constantes, évite les problèmes posés par scipy.interp1d """
import scipy.interpolate
# from scipy import array
def extrap1d(interpolator):
xs = interpolator.x
ys = interpolator.y
# def pointwise(x):
# if x < xs[0]:
# return ys[0]+(x-xs[0])*(ys[1]-ys[0])/(xs[1]-xs[0])
# elif x > xs[-1]:
# return ys[-1]+(x-xs[-1])*(ys[-1]-ys[-2])/(xs[-1]-xs[-2])
# else:
# return interpolator(x)
def ufunclike(xnew):
Iinterp = np.intersect1d( np.where(xnew>xs[0])[0], np.where(xnew<xs[-1])[0] ).astype(int)
Iextrap_low = np.where(xnew<=xs[0])
Iextrap_up = np.where(xnew>=xs[-1])
ynew=np.zeros_like(xnew)
ynew[Iinterp] = interpolator(xnew[Iinterp])
ynew[Iextrap_low] = ys[0]
ynew[Iextrap_up] = ys[-1]
return ynew
# return np.array(map(pointwise, np.array(xnew)))
return ufunclike
return extrap1d(scipy.interpolate.interp1d(x,y,#axis=0,
kind=kind))
if __name__=='__main__':
import matplotlib.pyplot as plt
sDict = {'sCase': 'unsteady',
'unsteady': {'dt':1e-6, 't_f':1e-3},
'progressive':{
'dts': [1e-7, 1e-6, 1e-5], #successive time steps
'ntrelax': [ 100, 100], #number of transition time steps after the stabilization steps to transition from on dt to another
'nstab': [200, 100, 100], #number of time steps with fixed time steps for each separate dt provided
}}
time = generateTimeVector(sDict)
plt.figure()
plt.plot(time)
plt.title('time vector')
plt.xlabel('index')
plt.ylabel('time')
plt.figure()
plt.plot(np.diff(time))
plt.title('time vector gradient')
plt.xlabel('index')
plt.ylabel('dt')
# test merge
dict1 = {'a': 1.,
'b':{'c':2,
'd':4,
}}
dict2 = {'a': 1.3,
'b':{'c':23,
'f': 5,
'e':{'test':'a word',}
}}
dict3 = mergeDict(dict1, dict2)
print(dict3)
# test de l'interpolation avev extrapolation linéaire
x= np.array([0., 1., 2.])
y = np.array([0., 2., 4.])
xnew = np.array([-1, 0., 0.5, 1.5, 2., 4.])
ynew = interpExtrap1D(x,y,kind='linear')(xnew)
ynew2 = scipy.interpolate.interp1d(x,y,kind='linear', fill_value='extrapolate')(xnew)
plt.figure()
plt.plot(x,y,label='original', marker='+', color='b')
plt.scatter(xnew,ynew, label='new custom', marker='o', color='r')
plt.scatter(xnew,ynew2, label='interp1d', marker='x', color='g')
plt.legend()
plt.title('Validation de mon interpolation avec extrapolation constante')