-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathattacks.py
278 lines (250 loc) · 11 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from PIL import Image
import numpy as np
import tensorflow as tf
from tools.utils import *
import json
import pdb
import os
import sys
import time
import scipy.misc
import PIL
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from tools.logging_utils import *
from tools.inception_v3_imagenet import model
from tools.imagenet_labels import label_to_name
IMAGENET_PATH=""
NUM_LABELS=1000
SIZE = 299
def main(args, gpus):
# INITIAL IMAGE AND CLASS SELECTION
if args.img_path:
initial_img = np.asarray(Image.open(args.img_path).resize((SIZE, SIZE)))
orig_class = args.orig_class
initial_img = initial_img.astype(np.float32) / 255.0
else:
x, y = get_image(args.img_index, IMAGENET_PATH)
orig_class = y
initial_img = x
# PARAMETER SETUP
if args.target_class is None:
target_class = pseudorandom_target(args.img_index, NUM_LABELS, orig_class)
print('chose pseudorandom target class: %d' % target_class)
else:
target_class = args.target_class
batch_size = args.batch_size
out_dir = args.out_dir
epsilon = args.epsilon
lower = np.clip(initial_img - args.epsilon, 0., 1.)
upper = np.clip(initial_img + args.epsilon, 0., 1.)
adv = initial_img.copy() if not args.restore else \
np.clip(np.load(args.restore), lower, upper)
batch_per_gpu = batch_size // len(gpus)
log_iters = args.log_iters
queries_per_iter = args.samples_per_draw
max_iters = int(np.ceil(args.max_queries // queries_per_iter))
max_lr = args.max_lr
# ----- partial info params -----
k = args.top_k
goal_epsilon = epsilon
adv_thresh = args.adv_thresh
if k > 0:
if target_class == -1:
raise ValueError("Partial-information attack is a targeted attack.")
adv = image_of_class(target_class, IMAGENET_PATH)
epsilon = args.starting_eps
delta_epsilon = args.starting_delta_eps
else:
k = NUM_LABELS
# ----- label only params -----
label_only = args.label_only
zero_iters = args.zero_iters
# TARGET CLASS SELECTION
if target_class < 0:
one_hot_vec = one_hot(orig_class, NUM_LABELS)
else:
one_hot_vec = one_hot(target_class, NUM_LABELS)
labels = np.repeat(np.expand_dims(one_hot_vec, axis=0),
repeats=batch_per_gpu, axis=0)
is_targeted = 1 if target_class >= 0 else -1
# SESSION INITIALIZATION
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, initial_img.shape)
eval_logits, eval_preds = model(sess, tf.expand_dims(x, 0))
if target_class >= 0:
eval_percent_adv = tf.equal(eval_preds[0], tf.constant(target_class, tf.int64))
else:
eval_percent_adv = tf.not_equal(eval_preds[0], tf.constant(orig_class, tf.int64))
# TENSORBOARD SETUP
empirical_loss = tf.placeholder(dtype=tf.float32, shape=())
lr_placeholder = tf.placeholder(dtype=tf.float32, shape=())
loss_vs_queries = tf.summary.scalar('empirical loss vs queries', empirical_loss)
loss_vs_steps = tf.summary.scalar('empirical loss vs step', empirical_loss)
lr_vs_queries = tf.summary.scalar('lr vs queries', lr_placeholder)
lr_vs_steps = tf.summary.scalar('lr vs step', lr_placeholder)
writer = tf.summary.FileWriter(out_dir, graph=sess.graph)
log_file = open(os.path.join(out_dir, 'log.txt'), 'w+')
with open(os.path.join(out_dir, 'args.json'), 'w') as args_file:
json.dump(args.__dict__, args_file)
# LOSS FUNCTION
def standard_loss(eval_points, noise):
logits, preds = model(sess, eval_points)
losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
return losses, noise
def label_only_loss(eval_points, noise):
noised_eval_points = tf.zeros((batch_per_gpu,))
tiled_points = tf.tile(tf.expand_dims(eval_points, 0), [zero_iters,1,1,1,1])
noised_eval_im = tiled_points + \
tf.random_uniform(tf.shape(tiled_points), minval=-1, \
maxval=1)*args.label_only_sigma
logits, preds = model(sess, tf.reshape(noised_eval_im, (-1,) + initial_img.shape))
vals, inds = tf.nn.top_k(logits, k=k)
real_inds = tf.reshape(inds, (zero_iters, batch_per_gpu, -1))
rank_range = tf.range(start=k, limit=0, delta=-1, dtype=tf.float32)
tiled_rank_range = tf.tile(tf.reshape(rank_range, (1, 1, k)), [zero_iters, batch_per_gpu, 1])
batches_in = tf.where(tf.equal(real_inds, target_class),
tiled_rank_range, tf.zeros(tf.shape(tiled_rank_range)))
return 1 - tf.reduce_mean(batches_in, [0, 2]), noise
def partial_info_loss(eval_points, noise):
logits, preds = model(sess, eval_points)
losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
vals, inds = tf.nn.top_k(logits, k=k)
# inds is batch_size x k
good_inds = tf.where(tf.equal(inds, tf.constant(target_class))) # returns (# true) x 3
good_images = good_inds[:,0] # inds of img in batch that worked
losses = tf.gather(losses, good_images)
noise = tf.gather(noise, good_images)
return losses, noise
# GRADIENT ESTIMATION GRAPH
grad_estimates = []
final_losses = []
loss_fn = label_only_loss if label_only else \
(partial_info_loss if k < NUM_LABELS else standard_loss)
for i, device in enumerate(gpus):
with tf.device(device):
print('loading on gpu %d of %d' % (i+1, len(gpus)))
noise_pos = tf.random_normal((batch_per_gpu//2,) + initial_img.shape)
noise = tf.concat([noise_pos, -noise_pos], axis=0)
eval_points = x + args.sigma * noise
losses, noise = loss_fn(eval_points, noise)
losses_tiled = tf.tile(tf.reshape(losses, (-1, 1, 1, 1)), (1,) + initial_img.shape)
grad_estimates.append(tf.reduce_mean(losses_tiled * noise, axis=0)/args.sigma)
final_losses.append(losses)
grad_estimate = tf.reduce_mean(grad_estimates, axis=0)
final_losses = tf.concat(final_losses, axis=0)
# GRADIENT ESTIMATION EVAL
def get_grad(pt, spd, bs):
num_batches = spd // bs
losses = []
grads = []
feed_dict = {x: pt}
for _ in range(num_batches):
loss, dl_dx_ = sess.run([final_losses, grad_estimate], feed_dict)
losses.append(np.mean(loss))
grads.append(dl_dx_)
return np.array(losses).mean(), np.mean(np.array(grads), axis=0)
# CONCURRENT VISUALIZATION
if args.visualize:
with tf.device('/cpu:0'):
render_feed = tf.placeholder(tf.float32, initial_img.shape)
render_exp = tf.expand_dims(render_feed, axis=0)
render_logits, _ = model(sess, render_exp)
assert out_dir[-1] == '/'
# HISTORY VARIABLES (for backtracking and momentum)
num_queries = 0
g = 0
prev_adv = adv
last_ls = []
# STEP CONDITION (important for partial-info attacks)
def robust_in_top_k(t_, prop_adv_,k_):
if k == NUM_LABELS:
return True
for i in range(1):
n = np.random.rand(*prop_adv_.shape)*args.sigma
eval_logits_ = sess.run(eval_logits, {x: prop_adv_})[0]
if not t_ in eval_logits_.argsort()[-k_:][::-1]:
return False
return True
# MAIN LOOP
for i in range(max_iters):
start = time.time()
if args.visualize:
render_frame(sess, adv, i, render_logits, render_feed, out_dir)
# CHECK IF WE SHOULD STOP
padv = sess.run(eval_percent_adv, feed_dict={x: adv})
if padv == 1 and epsilon <= goal_epsilon:
print('[log] early stopping at iteration %d' % i)
break
prev_g = g
l, g = get_grad(adv, args.samples_per_draw, batch_size)
# SIMPLE MOMENTUM
g = args.momentum * prev_g + (1.0 - args.momentum) * g
# PLATEAU LR ANNEALING
last_ls.append(l)
last_ls = last_ls[-args.plateau_length:]
if last_ls[-1] > last_ls[0] \
and len(last_ls) == args.plateau_length:
if max_lr > args.min_lr:
print("[log] Annealing max_lr")
max_lr = max(max_lr / args.plateau_drop, args.min_lr)
last_ls = []
# SEARCH FOR LR AND EPSILON DECAY
current_lr = max_lr
proposed_adv = adv - is_targeted * current_lr * np.sign(g)
prop_de = 0.0
if l < adv_thresh and epsilon > goal_epsilon:
prop_de = delta_epsilon
while current_lr >= args.min_lr:
# PARTIAL INFORMATION ONLY
if k < NUM_LABELS:
proposed_epsilon = max(epsilon - prop_de, goal_epsilon)
lower = np.clip(initial_img - proposed_epsilon, 0, 1)
upper = np.clip(initial_img + proposed_epsilon, 0, 1)
# GENERAL LINE SEARCH
proposed_adv = adv - is_targeted * current_lr * np.sign(g)
proposed_adv = np.clip(proposed_adv, lower, upper)
num_queries += 1
if robust_in_top_k(target_class, proposed_adv, k):
if prop_de > 0:
delta_epsilon = max(prop_de, 0.1)
last_ls = []
prev_adv = adv
adv = proposed_adv
epsilon = max(epsilon - prop_de/args.conservative, goal_epsilon)
break
elif current_lr >= args.min_lr*2:
current_lr = current_lr / 2
#print("[log] backtracking lr to %3f" % (current_lr,))
else:
prop_de = prop_de / 2
if prop_de == 0:
raise ValueError("Did not converge.")
if prop_de < 2e-3:
prop_de = 0
current_lr = max_lr
print("[log] backtracking eps to %3f" % (epsilon-prop_de,))
# BOOK-KEEPING STUFF
num_queries += args.samples_per_draw*(zero_iters if label_only else 1)
log_text = 'Step %05d: loss %.4f lr %.2E eps %.3f (time %.4f)' % (i, l, \
current_lr, epsilon, time.time() - start)
log_file.write(log_text + '\n')
print(log_text)
if i % log_iters == 0:
lvq, lvs, lrvq, lrvs = sess.run([loss_vs_queries, loss_vs_steps,
lr_vs_queries, lr_vs_steps], {
empirical_loss:l,
lr_placeholder:current_lr
})
writer.add_summary(lvq, num_queries)
writer.add_summary(lrvq, num_queries)
writer.add_summary(lvs, i)
writer.add_summary(lrvs, i)
if (i+1) % args.save_iters == 0 and args.save_iters > 0:
np.save(os.path.join(out_dir, '%s.npy' % (i+1)), adv)
scipy.misc.imsave(os.path.join(out_dir, '%s.png' % (i+1)), adv)
log_output(sess, eval_logits, eval_preds, x, adv, initial_img, \
target_class, out_dir, orig_class, num_queries)
if __name__ == '__main__':
main()