@@ -57,6 +57,26 @@ uint32_t PolyMod(const data& v)
57
57
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
58
58
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
59
59
// for `c`.
60
+
61
+ // The following Sage code constructs the generator used:
62
+ //
63
+ // B = GF(2) # Binary field
64
+ // BP.<b> = B[] # Polynomials over the binary field
65
+ // F_mod = b**5 + b**3 + 1
66
+ // F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
67
+ // FP.<x> = F[] # Polynomials over GF(32)
68
+ // E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23)
69
+ // E.<e> = F.extension(E_mod) # GF(1024) extension field definition
70
+ // for p in divisors(E.order() - 1): # Verify e has order 1023.
71
+ // assert((e**p == 1) == (p % 1023 == 0))
72
+ // G = lcm([(e**i).minpoly() for i in range(997,1000)])
73
+ // print(G) # Print out the generator
74
+ //
75
+ // It demonstrates that g(x) is the least common multiple of the minimal polynomials
76
+ // of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024).
77
+ // That guarantees it is, in fact, the generator of a primitive BCH code with cycle
78
+ // length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details.
79
+
60
80
uint32_t c = 1 ;
61
81
for (const auto v_i : v) {
62
82
// We want to update `c` to correspond to a polynomial with one extra term. If the initial
@@ -79,12 +99,21 @@ uint32_t PolyMod(const data& v)
79
99
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
80
100
c = ((c & 0x1ffffff ) << 5 ) ^ v_i;
81
101
82
- // Finally, for each set bit n in c0, conditionally add {2^n}k(x):
102
+ // Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be
103
+ // computed using the following Sage code (continuing the code above):
104
+ //
105
+ // for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers.
106
+ // v = 0
107
+ // for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)):
108
+ // v = v*32 + coef.integer_representation()
109
+ // print("0x%x" % v)
110
+ //
83
111
if (c0 & 1 ) c ^= 0x3b6a57b2 ; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
84
112
if (c0 & 2 ) c ^= 0x26508e6d ; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
85
113
if (c0 & 4 ) c ^= 0x1ea119fa ; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
86
114
if (c0 & 8 ) c ^= 0x3d4233dd ; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
87
115
if (c0 & 16 ) c ^= 0x2a1462b3 ; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
116
+
88
117
}
89
118
return c;
90
119
}
@@ -116,7 +145,8 @@ bool VerifyChecksum(const std::string& hrp, const data& values)
116
145
// PolyMod computes what value to xor into the final values to make the checksum 0. However,
117
146
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid
118
147
// list of values would result in a new valid list. For that reason, Bech32 requires the
119
- // resulting checksum to be 1 instead.
148
+ // resulting checksum to be 1 instead. See
149
+ // https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details.
120
150
return PolyMod (Cat (ExpandHRP (hrp), values)) == 1 ;
121
151
}
122
152
0 commit comments