-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexecute.py
123 lines (112 loc) · 4.46 KB
/
execute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import torch
import argparse
from utils import load_data, spectral, bestMap, evaluate
from sklearn.cluster import KMeans
import math
from model import DSSNE
from time import *
import warnings
warnings.filterwarnings('ignore')
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='3sources', help = 'Dataset for multi-view training.')
parser.add_argument('--epochs', type=int, default=1000, help='Number of epochs to train.')
parser.add_argument('--patience', type=int, default=10, help='Patience for early stop.')
parser.add_argument('--cuda', type=int, default=1, help='Use CUDA for training.')
parser.add_argument('--train', type=int, default=1, help='Train or not.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate.')
parser.add_argument('--wd', type=float, default=0.0, help='Weight decay (L2 loss on parameters).')
parser.add_argument('--knn', type=int, default=16, help='KNN K.')
parser.add_argument('--sigma', type=float, default=0.5, help='Weight parameters for knn.')
parser.add_argument('--mu', type=float, default=0.769, help='Weight parameters for L2.')
parser.add_argument('--alpha', type=float, default=0.769, help='Weight parameters for diffusion.')
parser.add_argument('--sc', type=int, default=1, help='Use spectral cluster or k-means')
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
if args.sc:
print('_____________'+args.dataset+' Spectral Cluster'+'__________________')
else:
print('_____________'+args.dataset+' K-means'+'__________________')
print("Parameter settings:",args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# training params
nb_epochs = args.epochs
patience = args.patience
lr = args.lr
l2_coef = args.wd
para_mu = args.mu
para_alpha = args.alpha
Train_flag = args.train
begin_time = time()
dataFile = '/home/kzhan/data/' + args.dataset + '.mat'
adj, labels = load_data(dataFile, args.knn, args.sigma)
kmeansK = len(np.unique(labels))
Y = labels.T[0]
end_time = time()
run_time = end_time - begin_time
print('Reading Time:{}s'.format(run_time))
n_nodes = len(Y) #nodes
ViewN = len(adj) #views
cnt_wait = 0
best = 1e9
best_t = 0
I = torch.eye(n_nodes)
if args.cuda:
print('Using GPU', end=' ')
I = I.cuda()
for i in range(0, ViewN):
adj[i] = adj[i].cuda()
else:
print('Using CPU', end=' ')
model = DSSNE(n_nodes, I, para_mu, para_alpha)
optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef)
if args.cuda:
model.cuda()
if Train_flag:
for epoch in range(nb_epochs):
adj_hat, adj_view, loss = model(adj)
if loss < best:
best = loss
best_t = epoch
cnt_wait = 0
torch.save(model.state_dict(), './log/'+args.dataset+'_best.pkl')
else:
cnt_wait += 1
if cnt_wait == patience or math.isnan(loss):
print('\nEarly stopping!', end='')
break
loss.backward()
optimiser.step()
#print("\r\rMulti-view Learning: Epoch:%04d || " % epoch, "Loss:%5.4f || " % loss, \
# "Best:%04d || " % best_t, "Wait:%03d" % (cnt_wait+1), end=' ')
print(' Loading {}th epoch'.format(best_t))
model.load_state_dict(torch.load('./log/'+args.dataset+'_best.pkl'))
A, adj_view, l= model(adj)
A = A + A.t()
A = A.cpu().detach().numpy()
if args.sc:
predY = spectral(A, kmeansK)
else:
predY = KMeans(n_clusters=kmeansK).fit(A).labels_
gnd_Y = bestMap(predY, Y)
nmi, acc, ari, f1, precision, recall, purity = evaluate(gnd_Y, predY)
end_time = time()
run_time = end_time - begin_time
print('Result: NMI:%1.4f || ACC:%1.4f || ARI:%1.4f || F-score:%1.4f || Precision:%1.4f \
|| Recall:%1.4f || Purity:%1.4f || Time:%5.4fs'%(nmi, acc, ari, f1, precision, recall, purity, run_time))
print('&{:.3f}'.format(nmi)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(acc)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(ari)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(f1)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(precision)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(recall)+'$\pm${:.3f}'.format(0.0)+
'&{:.3f}'.format(purity)+'$\pm${:.3f}\\\\'.format(0.0))
if args.sc:
print('_____________'+args.dataset+' Spectral Cluster'+'__________________\n\n\n')
else:
print('_____________'+args.dataset+' K-means'+'__________________\n\n\n')