-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsvhn2mnist_trainer.py
311 lines (272 loc) · 15.3 KB
/
svhn2mnist_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import tensorflow as tf
import numpy as np
from utils import return_mnist, return_svhn, judge_func, weight_variable, bias_variable, max_pool_3x3, conv2d, \
batch_norm_conv, batch_norm_fc, batch_generator
flags = tf.app.flags
flags.DEFINE_float('lamda', 0.5, "value of lamda")
flags.DEFINE_float('learning_rate', 0.05, "value of learnin rage")
FLAGS = flags.FLAGS
N_CLASS = 10
#input data path!
path_svhn_train = ''
path_svhn_test = ''
path_mnist_train = ''
path_mnist_test = ''
print('data loading...')
data_s_im, data_s_im_test, data_s_label, data_s_label_test = return_svhn(path_svhn_train, path_svhn_test)
data_t_im, data_t_im_test, data_t_label, data_t_label_test = return_mnist(path_mnist_train, path_mnist_test)
print('load finished')
# Compute pixel mean for normalizing data
pixel_mean = np.vstack([data_t_im, data_s_im]).mean((0, 1, 2))
num_test = 500
batch_size = 128
class SVHNModel(object):
"""SVHN domain adaptation model."""
def __init__(self):
self._build_model()
def _build_model(self):
self.X = tf.placeholder(tf.uint8, [None, 32, 32, 3])
self.y = tf.placeholder(tf.float32, [None, N_CLASS])
self.train = tf.placeholder(tf.bool, [])
self.keep_prob = tf.placeholder(tf.float32)
all_labels = lambda: self.y
source_labels = lambda: tf.slice(self.y, [0, 0], [batch_size / 2, -1])
self.classify_labels = tf.cond(self.train, source_labels, all_labels)
X_input = (tf.cast(self.X, tf.float32) - pixel_mean) / 255.
# CNN model for feature extraction
with tf.variable_scope('feature_extractor'):
W_conv0 = weight_variable([5, 5, 3, 64], stddev=0.01, name='W_conv0')
b_conv0 = bias_variable([64], init=0.01, name='b_conv0')
h_conv0 = tf.nn.relu(conv2d(X_input, W_conv0) + b_conv0)
h_pool0 = max_pool_3x3(h_conv0)
W_conv1 = weight_variable([5, 5, 64, 64], stddev=0.01, name='W_conv1')
b_conv1 = bias_variable([64], init=0.01, name='b_conv1')
h_conv1 = tf.nn.relu(conv2d(h_pool0, W_conv1) + b_conv1)
h_pool1 = max_pool_3x3(h_conv1)
W_conv2 = weight_variable([5, 5, 64, 128], stddev=0.01, name='W_conv2')
b_conv2 = bias_variable([128], init=0.01, name='b_conv1')
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_conv2 = batch_norm_conv(h_conv2, 128)
h_fc1_drop = tf.nn.dropout(h_conv2, self.keep_prob)
h_fc1_drop = tf.reshape(h_fc1_drop, [-1, 8192])
W_fc_0 = weight_variable([8192, 3072], stddev=0.01, name='W_fc0')
b_fc_0 = bias_variable([3072], init=0.01, name='b_fc0')
h_fc_0 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc_0) + b_fc_0)
self.feature = tf.nn.dropout(h_fc_0, self.keep_prob)
with tf.variable_scope('label_predictor_1'):
W_fc0 = weight_variable([3072, 2048], stddev=0.01, name='W_fc0')
b_fc0 = bias_variable([2048], init=0.01, name='b_fc0')
h_fc0 = tf.nn.relu(batch_norm_fc(tf.matmul(self.feature, W_fc0) + b_fc0, 2048))
h_fc0 = tf.nn.dropout(h_fc0, self.keep_prob)
W_fc1 = weight_variable([2048, N_CLASS], stddev=0.01, name='W_fc1')
b_fc1 = bias_variable([N_CLASS], init=0.01, name='b_fc1')
logits = tf.matmul(h_fc0, W_fc1) + b_fc1
all_logits = lambda: logits
source_logits = lambda: tf.slice(logits, [0, 0], [batch_size / 2, -1])
classify_logits = tf.cond(self.train, source_logits, all_logits)
self.pred_1 = tf.nn.softmax(classify_logits)
self.pred_loss_1 = tf.nn.softmax_cross_entropy_with_logits(logits=classify_logits,
labels=self.classify_labels)
with tf.variable_scope('label_predictor_2'):
W_fc0_2 = weight_variable([3072, 2048], stddev=0.01, name='W_fc0_2')
b_fc0_2 = bias_variable([2048], init=0.01, name='b_fc0_2')
h_fc0_2 = tf.nn.relu(batch_norm_fc(tf.matmul(self.feature, W_fc0_2) + b_fc0_2, 2048))
h_fc0_2 = tf.nn.dropout(h_fc0_2, self.keep_prob)
W_fc1_2 = weight_variable([2048, 10], stddev=0.01, name='W_fc1_2')
b_fc1_2 = bias_variable([10], init=0.01, name='b_fc1_2')
logits2 = tf.matmul(h_fc0_2, W_fc1_2) + b_fc1_2
all_logits_2 = lambda: logits2
source_logits_2 = lambda: tf.slice(logits2, [0, 0], [batch_size / 2, -1])
classify_logits_2 = tf.cond(self.train, source_logits_2, all_logits_2)
self.pred_2 = tf.nn.softmax(classify_logits_2)
self.pred_loss_2 = tf.nn.softmax_cross_entropy_with_logits(logits=classify_logits_2,
labels=self.classify_labels)
with tf.variable_scope('label_predictor_target'):
W_fc0_t = weight_variable([3072, 2048], stddev=0.01, name='W_fc0_t')
b_fc0_t = bias_variable([2048], init=0.01, name='b_fc0_t')
h_fc0_t = tf.nn.relu(tf.matmul(self.feature, W_fc0_t) + b_fc0_t)
h_fc0_t = tf.nn.dropout(h_fc0_t, self.keep_prob)
W_fc1_t = weight_variable([2048, 10], stddev=0.01, name='W_fc1_t')
b_fc1_t = bias_variable([10], init=0.01, name='b_fc1_t')
logits_t = tf.matmul(h_fc0_t, W_fc1_t) + b_fc1_t
all_logits = lambda: logits_t
source_logits = lambda: tf.slice(logits_t, [0, 0], [batch_size / 2, -1])
classify_logits = tf.cond(self.train, source_logits, all_logits)
self.pred_t = tf.nn.softmax(classify_logits)
self.pred_loss_t = tf.nn.softmax_cross_entropy_with_logits(logits=classify_logits,
labels=self.classify_labels)
temp_w = W_fc0
temp_w2 = W_fc0_2
weight_diff = tf.matmul(temp_w, temp_w2, transpose_b=True)
weight_diff = tf.abs(weight_diff)
weight_diff = tf.reduce_sum(weight_diff, 0)
self.weight_diff = tf.reduce_mean(weight_diff)
graph = tf.get_default_graph()
with graph.as_default():
model = SVHNModel()
learning_rate = tf.placeholder(tf.float32, [])
pred_loss1 = tf.reduce_mean(model.pred_loss_1)
pred_loss2 = tf.reduce_mean(model.pred_loss_2)
pred_loss_target = tf.reduce_mean(model.pred_loss_t)
weight_diff = model.weight_diff
pred_loss1 = pred_loss1 + pred_loss2 + FLAGS.lamda * weight_diff
pred_loss2 = pred_loss1 + pred_loss_target
target_loss = pred_loss_target
total_loss = pred_loss1 + pred_loss2
regular_train_op1 = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(pred_loss1)
regular_train_op2 = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(pred_loss2)
target_train_op = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(target_loss)
# Evaluation
correct_label_pred1 = tf.equal(tf.argmax(model.classify_labels, 1), tf.argmax(model.pred_1, 1))
correct_label_pred2 = tf.equal(tf.argmax(model.classify_labels, 1), tf.argmax(model.pred_2, 1))
correct_label_pred_t = tf.equal(tf.argmax(model.classify_labels, 1), tf.argmax(model.pred_t, 1))
label_acc_t = tf.reduce_mean(tf.cast(correct_label_pred_t, tf.float32))
label_acc1 = tf.reduce_mean(tf.cast(correct_label_pred1, tf.float32))
label_acc2 = tf.reduce_mean(tf.cast(correct_label_pred2, tf.float32))
# Params
num_steps = 3000
def train_and_evaluate(graph, model, verbose=True):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
with tf.Session(graph=graph, config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
tf.initialize_all_variables().run()
# Batch generators
for t in xrange(30):
print 'phase:%d' % (t)
label_target = np.zeros((data_t_im.shape[0], N_CLASS))
if t == 0:
gen_source_only_batch = batch_generator(
[data_s_im, data_s_label], batch_size)
else:
source_train = data_s_im
source_label = data_s_label
source_train = np.r_[source_train, new_data]
new_label = new_label.reshape((new_label.shape[0], new_label.shape[2]))
source_label = np.r_[source_label, new_label]
gen_source_batch = batch_generator(
[source_train, source_label], batch_size / 2)
gen_new_batch = batch_generator(
[new_data, new_label], batch_size)
gen_source_only_batch = batch_generator(
[data_s_im, data_s_label], batch_size)
# Training loop
for i in range(num_steps):
lr = FLAGS.learning_rate
dropout = 0.5
# Training step
if t == 0:
X0, y0 = gen_source_only_batch.next()
_, _, batch_loss, w_diff, ploss, p_l1, p_l2, p_acc1, p_acc2 = \
sess.run([target_train_op, regular_train_op1, total_loss, weight_diff, total_loss, pred_loss1,
pred_loss2, label_acc1, label_acc2],
feed_dict={model.X: X0, model.y: y0,
model.train: False, learning_rate: lr, model.keep_prob: dropout})
if verbose and i % 500 == 0:
print 'loss: %f w_diff: %f p_l1: %f p_l2: %f p_acc1: %f p_acc2: %f' % \
(batch_loss, w_diff, p_l1, p_l2, p_acc1, p_acc2)
if t >= 1:
X0, y0 = gen_source_batch.next()
_, batch_loss, w_diff, ploss, p_l1, p_l2, p_acc1, p_acc2 = \
sess.run([regular_train_op1, total_loss, weight_diff, total_loss, pred_loss1, pred_loss2,
label_acc1, label_acc2],
feed_dict={model.X: X0, model.y: y0, model.train: False, learning_rate: lr,
model.keep_prob: dropout})
X1, y1 = gen_new_batch.next()
_, p_acc_t = \
sess.run([target_train_op, label_acc_t],
feed_dict={model.X: X1, model.y: y1, model.train: False, learning_rate: lr,
model.keep_prob: dropout})
if verbose and i % 500 == 0:
print 'loss: %f w_diff: %f loss1: %f loss2: %f acc1: %f acc2: %f acc_t: %f' % \
(batch_loss, w_diff, p_l1, p_l2, p_acc1, p_acc2, p_acc_t)
# Attach Pseudo Label
step = 0
pred1_stack = np.zeros((0, N_CLASS))
pred2_stack = np.zeros((0, N_CLASS))
predt_stack = np.zeros((0, N_CLASS))
stack_num = min(data_t_im.shape[0] / batch_size, 100 * (t + 1))
# Shuffle pseudo labeled candidates
perm = np.random.permutation(data_t_im.shape[0])
gen_target_batch = batch_generator(
[data_t_im[perm, :], label_target], batch_size, shuffle=False)
while step < stack_num:
if t == 0:
X1, y1 = gen_target_batch.next()
pred_1, pred_2 = sess.run([model.pred_1, model.pred_2],
feed_dict={model.X: X1,
model.y: y1,
model.train: False,
model.keep_prob: 1})
pred1_stack = np.r_[pred1_stack, pred_1]
pred2_stack = np.r_[pred2_stack, pred_2]
step += 1
else:
X1, y1 = gen_target_batch.next()
pred_1, pred_2, pred_t = sess.run([model.pred_1, model.pred_2, model.pred_t],
feed_dict={model.X: X1,
model.y: y1,
model.train: False,
model.keep_prob: 1})
pred1_stack = np.r_[pred1_stack, pred_1]
pred2_stack = np.r_[pred2_stack, pred_2]
predt_stack = np.r_[predt_stack, pred_t]
step += 1
if t == 0:
cand = data_t_im[perm, :]
rate = max(int((t + 1) / 20.0 * pred1_stack.shape[0]), 1000)
new_data, new_label = judge_func(cand,
pred1_stack[:rate, :],
pred2_stack[:rate, :],
num_class=N_CLASS)
if t != 0:
cand = data_t_im[perm, :]
rate = min(max(int((t + 1) / 20.0 * pred1_stack.shape[0]), 5000), 40000) # always 20000 was best
new_data, new_label = judge_func(cand,
pred1_stack[:rate, :],
pred2_stack[:rate, :],
num_class=N_CLASS)
# Evaluation
gen_source_batch = batch_generator(
[data_s_im, data_s_label], batch_size, test=True)
gen_target_batch = batch_generator(
[data_t_im_test, data_t_label_test], batch_size, test=True)
num_iter = int(data_t_im_test.shape[0] / batch_size) + 1
step = 0
total_source = 0
total_target = 0
target_pred1 = 0
target_pred2 = 0
total_acc1 = 0
total_acc2 = 0
size_t = 0
size_s = 0
while step < num_iter:
X0, y0 = gen_source_batch.next()
X1, y1 = gen_target_batch.next()
source_acc = sess.run(label_acc1,
feed_dict={model.X: X0, model.y: y0,
model.train: False, model.keep_prob: 1})
target_acc, t_acc1, t_acc2, = sess.run([label_acc_t, label_acc1, label_acc2],
feed_dict={model.X: X1, model.y: y1, model.train: False,
model.keep_prob: 1})
total_source += source_acc * len(X0)
total_target += target_acc * len(X1)
total_acc1 += t_acc1 * len(X1)
total_acc2 += t_acc2 * len(X1)
size_t += len(X1)
size_s += len(X0)
step += 1
print 'train target', total_target / size_t, total_acc1 / size_t, total_acc2 / size_t, total_source / size_s
return total_source / size_s, total_target / size_t, total_acc1 / size_t, total_acc2 / size_t
print '\nTraining Start'
all_source = 0
all_target = 0
for i in xrange(10):
source_acc, target_acc, t_acc1, t_acc2 = train_and_evaluate(graph, model)
all_source += source_acc
all_target += target_acc
print 'Source accuracy:', source_acc
print 'Target accuracy (Target Classifier):', target_acc
print 'Target accuracy (Classifier1):', t_acc1
print 'Target accuracy (Classifier2):', t_acc2
print 'Source accuracy:', all_source / 10
print 'Target accuracy:', all_target / 10