-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
400 lines (318 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import models as models
from dataset_preparation import MalwareDetect2Dataset, OpcodeDataset
from tqdm import tqdm
import yaml
import numpy as np
from typing import Optional
class ModelParams:
def __init__(
self,
input_size: int = 16 * 16,
hidden_size: Optional[int] = 256,
hidden_size1: Optional[int] = 128,
hidden_size2: Optional[int] = 64,
input_channels: int = 1,
num_classes: int = 5,
num_epochs: int = 32,
batch_size: int = 24,
learning_rate: float = 0.001,
patience: Optional[int] = None,
):
self.input_size = input_size
self.hidden_size = hidden_size
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.input_channels = input_channels
self.num_classes = num_classes
self.num_epochs = num_epochs
self.batch_size = batch_size
self.learning_rate = learning_rate
self.patience = patience
class EarlyStopping:
def __init__(self, patience=5, delta=0.0):
"""
Early stopping to stop the training when the validation loss doesn't improve.
Parameters:
- patience (int): How many epochs to wait before stopping when no improvement.
- delta (float): Minimum change in the monitored metric to qualify as an improvement.
"""
self.patience = patience
self.delta = delta
self.best_loss = float('inf')
self.counter = 0
self.early_stop = False
def __call__(self, val_loss):
if val_loss < self.best_loss - self.delta:
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
# Function to train the model and report accuracy for each epoch
def train_model(model, criterion, optimizer, train_loader, num_epochs=10, device='cpu'):
"""
Train the model and report loss and accuracy for each epoch.
Parameters:
- model (nn.Module): The neural network to train.
- criterion (torch.nn.Module): Loss function.
- optimizer (torch.optim.Optimizer): Optimizer for model parameters.
- train_loader (DataLoader): DataLoader for training data.
- device (torch.device): Device to run the model on (CPU or GPU).
- num_epochs (int): Number of epochs to train.
Returns:
- dict: Training history containing 'loss' and 'accuracy' per epoch.
"""
model.to(device)
model.train()
history = {'loss': [], 'accuracy': []}
for epoch in range(num_epochs):
running_loss = 0.0
correct = 0
total = 0
epoch_start = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{num_epochs}", unit="batch")
for images, labels in epoch_start:
images, labels = images.to(device), labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Accumulate training loss.
running_loss += loss.item()
# Calculate accuracy.
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Compute metrics for the epoch.
epoch_loss = running_loss / len(train_loader)
epoch_accuracy = 100 * correct / total
history['loss'].append(epoch_loss)
history['accuracy'].append(epoch_accuracy)
# Log epoch results.
print(f"Epoch [{epoch + 1}/{num_epochs}] - Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.2f}%")
return history
def train_with_validation(model, criterion, optimizer, train_loader, val_loader, num_epochs=10, device='cpu'):
"""
Train the model and report loss and accuracy for each epoch.
Parameters:
- model (nn.Module): The neural network to train.
- criterion (torch.nn.Module): Loss function.
- optimizer (torch.optim.Optimizer): Optimizer for model parameters.
- train_loader (DataLoader): DataLoader for training data.
- val_loader (DataLoader): DataLoader for validation data.
- device (torch.device): Device to run the model on (CPU or GPU).
- num_epochs (int): Number of epochs to train.
Returns:
- dict: Training history containing 'loss' and 'accuracy' per epoch.
"""
model.to(device)
model.train()
history = {'loss': [], 'accuracy': [], 'val_loss': [], 'val_accuracy': []}
for epoch in range(num_epochs):
running_loss = 0.0
correct = 0
total = 0
epoch_start = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{num_epochs}", unit="batch")
for images, labels in epoch_start:
images, labels = images.to(device), labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Accumulate training loss.
running_loss += loss.item()
# Calculate accuracy.
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Compute metrics for the epoch.
epoch_loss = running_loss / len(train_loader)
epoch_accuracy = 100 * correct / total
# Log epoch results.
history['loss'].append(epoch_loss)
history['accuracy'].append(epoch_accuracy)
# Validate the model.
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
# Compute metrics for the epoch.
epoch_val_loss = val_loss / len(val_loader)
epoch_val_accuracy = 100 * val_correct / val_total
history['val_loss'].append(epoch_val_loss)
history['val_accuracy'].append(epoch_val_accuracy)
print(f"Epoch [{epoch + 1}/{num_epochs}] - Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.2f}%, Val-loss: {epoch_val_loss:.4f}, Val-Accuracy: {epoch_val_accuracy:.2f}%")
def train_with_validation_and_early_stopping(model, criterion, optimizer, train_loader, val_loader, num_epochs=10, device='cpu', patience=5):
"""
Train the model with early stopping and report loss and accuracy for each epoch.
Parameters:
- model (nn.Module): The neural network to train.
- criterion (torch.nn.Module): Loss function.
- optimizer (torch.optim.Optimizer): Optimizer for model parameters.
- train_loader (DataLoader): DataLoader for training data.
- val_loader (DataLoader): DataLoader for validation data.
- device (torch.device): Device to run the model on (CPU or GPU).
- num_epochs (int): Number of epochs to train.
- patience (int): Number of epochs to wait for validation loss improvement.
Returns:
- dict: Training history containing 'loss' and 'accuracy' per epoch.
"""
model.to(device)
history = {'loss': [], 'accuracy': [], 'val_loss': [], 'val_accuracy': []}
early_stopping = EarlyStopping(patience=patience)
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
epoch_start = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{num_epochs}", unit="batch")
for images, labels in epoch_start:
images, labels = images.to(device), labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Accumulate training loss
running_loss += loss.item()
# Calculate accuracy
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Compute metrics for the epoch
epoch_loss = running_loss / len(train_loader)
epoch_accuracy = 100 * correct / total
# Log epoch results
history['loss'].append(epoch_loss)
history['accuracy'].append(epoch_accuracy)
# Validate the model
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
# Compute metrics for the epoch
epoch_val_loss = val_loss / len(val_loader)
epoch_val_accuracy = 100 * val_correct / val_total
history['val_loss'].append(epoch_val_loss)
history['val_accuracy'].append(epoch_val_accuracy)
print(f"Epoch [{epoch + 1}/{num_epochs}] - Loss: {epoch_loss:.4f}, Accuracy: {epoch_accuracy:.2f}%, "
f"Val-loss: {epoch_val_loss:.4f}, Val-Accuracy: {epoch_val_accuracy:.2f}%")
# Check for early stopping
early_stopping(epoch_val_loss)
if early_stopping.early_stop:
print(f"Early stopping triggered after epoch {epoch + 1}")
break
return history
def train_model(model, model_name, parameters, optimizer, train_loader, valid_loader, device):
print("Hello World!")
def save_model_and_params(model, model_name, parameters, optimizer, history):
print("Hello World!")
# Parameters
input_size = 16 * 16
hidden_size = 256
hidden_size1 = 128
hidden_size2 = 64
input_channels = 1
num_classes = 5
num_epochs = 32
batch_size = 24
learning_rate = 0.001
patience = 3
with open("config.yaml") as f:
config = yaml.safe_load(f)
data = config["data"]["opcode_data_tfidf"]
opcode_frequency_data_zipped = np.load(data)
X_train = opcode_frequency_data_zipped['X_train']
y_train = opcode_frequency_data_zipped['y_train']
train_dataset = OpcodeDataset(X_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# Create train and val datasets.
# train_dir = "./data/malware_detect2_simhash_1616_images/train"
# train_dataset = MalwareDetect2Dataset(data_dir=train_dir, transform=transform_cnn)
# train_size = int(0.9 * len(train_dataset))
# val_size = len(train_dataset) - train_size
# train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])
# Create train and val data loaders.
# train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
# Initialize the model, criterion, and optimizer.
# model = models.CNN3DOFC1LayerNet().to(device)
model = models.LinearClassifier(input_size=393, num_classes=5).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
history = train_model(model, criterion, optimizer, train_loader, num_epochs, device)
# history = train_with_validation(model, criterion, optimizer, train_loader, val_loader, num_epochs, device)
# history = train_with_validation_and_early_stopping(model, criterion, optimizer, train_loader, val_loader, num_epochs, device, patience)
# Save the model's weights, biases, and hyperparameters.
save_data = {
'model_state_dict': model.state_dict(),
'input_size': input_size,
# 'hidden_size': hidden_size,
# 'hidden_size1': hidden_size1,
# 'hidden_size2': hidden_size2,
# 'input_channels': input_channels,
'num_classes': num_classes,
'num_epochs': num_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate,
# 'patience': patience,
'history': history
}
torch.save(save_data, './models/linear_classifier_tfidf.pth')
# Optional: Plot training history
# plt.figure(figsize=(10, 5))
# plt.plot(history['loss'], label='Loss')
# plt.plot(history['accuracy'], label='Accuracy')
# plt.xlabel('Epoch')
# plt.ylabel('Metric')
# plt.legend()
# plt.title('Training Metrics')
# plt.show()
def main():
params = ModelParams(393, None, None, None, None, 5, 32, 24, 0.001, None)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open("config.yaml") as f:
config = yaml.safe_load(f)
data = config["data"]["opcode_data"]
opcode_frequency_data_zipped = np.load(data)
X_train = opcode_frequency_data_zipped['X_train']
y_train = opcode_frequency_data_zipped['y_train']
train_dataset = OpcodeDataset(X_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
model = models.LinearClassifier().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
history = train_model(model, criterion, optimizer, train_loader, num_epochs, device)
if __name__ == "__main__":
main()