-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogreg.py
193 lines (145 loc) · 5.79 KB
/
logreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
Very simple module for doing logistic regression.
Based on:
- http://blog.smellthedata.com/2009/06/python-logistic-regression-with-l2.html
- http://people.csail.mit.edu/jrennie/writing/lr.pdf
"""
from scipy.optimize.optimize import fmin_bfgs
import numpy as np
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
class Data(object):
""" Abstract base class for data objects. """
def likelihood(self, betas, alpha=0):
""" Likelihood of the data under the given settings of parameters. """
# Data likelihood
l = 0
for i in range(self.n):
l += log(sigmoid(self.y_train[i] * \
np.dot(betas, self.x_train[i,:])))
# Prior likelihood
for k in range(1, self.x_train.shape[1]):
l -= (alpha / 2.0) * betas[k]**2
return l
class SyntheticData(Data):
def __init__(self, n, d):
""" Create N instances of d dimensional input vectors and a 1D
class label (-1 or 1). """
self.n = n
self.d = d
means = .05 * np.random.randn(2, d)
self.x_train = np.zeros((n, d))
self.y_train = np.zeros(n)
for i in range(n):
if np.random.random() > .5:
y = 1
else:
y = 0
self.x_train[i, :] = np.random.random(d) + means[y, :]
self.y_train[i] = 2.0 * y - 1
self.x_test = np.zeros((n, d))
self.y_test = np.zeros(n)
for i in range(n):
if np.random.randn() > .5:
y = 1
else:
y = 0
self.x_test[i, :] = np.random.random(d) + means[y, :]
self.y_test[i] = 2.0 * y - 1
class TsvData(Data):
def __init__(self, train_path, test_path):
x_train, x_test = [], []
y_train, y_test = [], []
for path, x, y in ((train_path, x_train, y_train),
(test_path, x_test, y_test)):
with open(path, "r") as file:
for line in file:
numbers = [int(n) for n in line[:-1].split("\t")]
x.append(numbers[:-1])
y.append(numbers[-1])
self.x_train = np.array(x_train)
self.x_test = np.array(x_test)
self.y_train = np.array(y_train)
self.y_test = np.array(y_test)
self.n = y_train.shape[0]
self.d = x_train.shape[1]
class Model(object):
""" A simple logistic regression model with L2 regularization (zero-mean
Gaussian priors on parameters). """
def __init__(self, d):
""" Create model for input data consisting of d dimensions. """
# Initialize parameters to zero, for lack of a better choice.
self.betas = np.zeros(d)
def train(self, data, alpha=0):
""" Define the gradient and hand it off to a scipy gradient-based
optimizer. """
# Set alpha so it can be referred to later if needed
self.alpha = alpha
# Define the derivative of the likelihood with respect to beta_k.
# Need to multiply by -1 because we will be minimizing.
dB_k = lambda B, k: (k > 0) * self.alpha * B[k] - np.sum([ \
data.y_train[i] * data.x_train[i, k] * \
sigmoid(-data.y_train[i] *\
np.dot(B, data.x_train[i,:])) \
for i in range(data.n)])
# The full gradient is just an array of componentwise derivatives
dB = lambda B: np.array([dB_k(B, k) \
for k in range(data.x_train.shape[1])])
# The function to be minimized
func = lambda B: -data.likelihood(betas=B, alpha=self.alpha)
# Optimize
self.betas = fmin_bfgs(func, self.betas, fprime=dB)
def predict(self, x):
return sigmoid(np.dot(self.betas, x))
def training_reconstruction(self, data):
p_y1 = np.zeros(data.n)
for i in range(data.n):
p_y1[i] = self.predict(data.x_train[i,:])
return p_y1
def test_predictions(self, data):
p_y1 = np.zeros(data.n)
for i in range(data.n):
p_y1[i] = self.predict(data.x_test[i,:])
return p_y1
def plot_training_reconstruction(self, data):
plot(np.arange(data.n), .5 + .5 * data.y_train, 'bo')
plot(np.arange(data.n), self.training_reconstruction(data), 'rx')
ylim([-.1, 1.1])
def plot_test_predictions(self, data):
plot(np.arange(data.n), .5 + .5 * data.y_test, 'yo')
plot(np.arange(data.n), self.test_predictions(data), 'rx')
ylim([-.1, 1.1])
if __name__ == "__main__":
from pylab import *
import sys
if len(sys.argv) >= 3:
# Read data from given TSV files
data = TsvData(sys.argv[1], sys.argv[2])
else:
# Create 20 dimensional data set with 25 points -- this will be
# susceptible to overfitting.
data = SyntheticData(25, 20)
lr = Model(data.d)
# Run for a variety of regularization strengths
alphas = [0, .001, .01, .1]
for j, a in enumerate(alphas):
print "Initial likelihood:"
print data.likelihood(lr.betas)
# Train the model
lr.train(data, alpha=a)
# Display execution info
print "Final betas:"
print lr.betas
print "Final likelihood:"
print data.likelihood(lr.betas)
# Plot the results
subplot(len(alphas), 2, 2*j + 1)
lr.plot_training_reconstruction(data)
ylabel("Alpha=%s" % a)
if j == 0:
title("Training set reconstructions")
subplot(len(alphas), 2, 2*j + 2)
lr.plot_test_predictions(data)
if j == 0:
title("Test set predictions")
show()