-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgroverIteration.py
261 lines (168 loc) · 5.21 KB
/
groverIteration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#################### Grover Iteration for 1 qubit
# Is it possible?
#################### Grover Iteration for 2 qubits
def gIteration00(qc, qr):
# apply the s gate to both qubits
qc.s(qr)
# apply h gate to the 2nd qubit
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply the s gate to both qubits
qc.s(qr)
# add the H gate in the Qubit 0 and 1
qc.h(qr)
# now use the X gate
qc.x(qr)
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# now use the X gate
qc.x(qr)
# add the H gate in the Qubit 0 and 1
qc.h(qr)
return qc, qr
#########################################################
def gIteration01(qc, qr):
# apply the s gate to 1st qubit
qc.s(qr[0])
# apply h gate to the 2nd qubit
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply the s gate to 1st qubit
qc.s(qr[0])
# add the H gate in the Qubit 0 and 1
qc.h(qr)
# now use the X gate
qc.x(qr)
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# now use the X gate
qc.x(qr)
# add the H gate in the Qubit 0 and 1
qc.h(qr)
return qc, qr
def gIteration10(qc, qr):
# apply the s gate to both qubits
qc.s(qr[1])
# apply h gate to the 2nd qubit
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply the s gate to both qubits
qc.s(qr[1])
# add the H gate in the Qubit 0 and 1
qc.h(qr)
# now use the X gate
qc.x(qr)
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# now use the X gate
qc.x(qr)
# add the H gate in the Qubit 0 and 1
qc.h(qr)
return qc, qr
def gIteration11(qc, qr):
# apply h gate to the 2nd qubit
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# add the H gate in the Qubit 0 and 1
qc.h(qr)
# now use the X gate
qc.x(qr)
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# apply CNOT with control as 2nd qubit to target as 1st qubit
qc.cx(qr[0], qr[1])
# apply h gate to the 2nd qubit again
qc.h(qr[1])
# now use the X gate
qc.x(qr)
# add the H gate in the Qubit 0 and 1
qc.h(qr)
return qc, qr
#################### Grover Iteration for 3 qubits
def gIteration000(qc, qr):
return qc, qr
def gIteration001(qc, qr):
return qc, qr
def gIteration010(qc, qr):
return qc, qr
def gIteration011(qc, qr):
return qc, qr
def gIteration100(qc, qr):
return qc, qr
def gIteration101(qc, qr):
return qc, qr
def gIteration110(qc, qr):
return qc, qr
def gIteration111(qc, qr):
return qc, qr
###########################################################
"""
if __name__ == '__main__':
Q_program = QuantumProgram()
Q_program1 = QuantumProgram()
qr = Q_program.create_quantum_register("qr", 2)
cr = Q_program.create_classical_register("cr", 2)
qc = Q_program.create_circuit("superposition", [qr], [cr])
qr1 = Q_program1.create_quantum_register("qr", 2)
cr1 = Q_program1.create_classical_register("cr", 2)
qc1 = Q_program1.create_circuit("superposition", [qr1], [cr1])
# put the qubits into a superposition of the states
qc.h(qr)
qc, qr = gIteration00(qc, qr)
#qc.measure(qr, cr)
qc, qr = gIteration01(qc, qr)
qc, qr = gIteration01(qc, qr)
qc, qr = gIteration01(qc, qr)
#qc.measure(qr, cr)
qc, qr = gIteration10(qc, qr)
qc, qr = gIteration10(qc, qr)
qc, qr = gIteration10(qc, qr)
qc, qr = gIteration10(qc, qr)
qc, qr = gIteration10(qc, qr)
# Copy the contents of the quantum register
qr1 = qr
qc.measure(qr, cr)
# Compiled and execute in the local_qasm_simulator
result = Q_program.execute(["superposition"], backend='local_qasm_simulator', shots=1)
# Show the results
print(result)
print(result.get_data("superposition"))
classical_state = result.get_data("superposition")['classical_state']
#Use Grover Iteration on the 2nd register based on the outcome of measuring the first
if(classical_state == 0):
qc1, qr1 = gIteration00(qc1, qr1)
elif(classical_state == 1):
qc1, qr1 = gIteration01(qc1, qr1)
elif(classical_state == 2):
qc1, qr1 = gIteration10(qc1, qr1)
elif(classical_state == 3):
qc1, qr1 = gIteration11(qc1, qr1)
qc1.measure(qr1, cr1)
result1 = Q_program1.execute(["superposition"], backend='local_qasm_simulator', shots=1)
print(result1)
print(result1.get_data("superposition"))
"""