-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgraph_rl.py
178 lines (135 loc) · 4.89 KB
/
graph_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv
from torch_geometric.nn import LayerNorm
from torch_geometric.nn import global_add_pool
import numpy as np
import random
from itertools import permutations
from matplotlib import pyplot as plt
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# REINFROCE Network
class REINFORCE_graph(nn.Module):
def __init__(self, state_space=None,
action_space=None,
num_hidden_layer=2,
hidden_dim=None,
learning_rate=None):
super(REINFORCE_graph, self).__init__()
# space size check
assert state_space is not None, "None state_space input: state_space should be assigned."
assert action_space is not None, "None action_space input: action_space should be assigned"
if hidden_dim is None:
hidden_dim = state_space * 2
self.conv1 = GCNConv(2, hidden_dim)
self.linear = nn.Linear(hidden_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, action_space)
self.layer_norm = LayerNorm(hidden_dim)
self.roll_out = []
self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
def put_data(self, data):
self.roll_out.append(data)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = global_add_pool(self.layer_norm(x), torch.LongTensor([0 for _ in range(4)]).to(device))
x = F.relu(self.linear(x))
x = self.linear2(x)
out = F.log_softmax(x, dim=1)
return out
def train_net(self, gamma):
R = 0
G = []
G_t = 0
# Whitening baseline
for r, prob in self.roll_out[::-1]:
G_t = r + gamma * G_t
G.append(G_t)
G = np.array(G)
G_mean = G.mean()
G_std = G.std()
self.optimizer.zero_grad()
for r, prob in self.roll_out[::-1]:
R = r + gamma * R
loss = -prob * ((R-G_mean) / G_std)
loss.backward()
self.optimizer.step()
self.roll_out = []
def create_torch_graph_data(data):
edge_index = list(permutations([i for i in range(4)], 2))
edge_index = torch.tensor(edge_index, dtype=torch.long)
edge_index = edge_index.t().contiguous()
node_feature = [[data[0], data[1]],[data[2], data[3]],[data[0], data[3]],[data[1], data[2]]]
# node_feature = [[data[0], data[3]],[data[1], data[2]]]
node_feature = torch.tensor(node_feature, dtype=torch.float)
data = Data(x=node_feature, edge_index=edge_index)
return data
def seed_torch(seed):
torch.manual_seed(seed)
if torch.backends.cudnn.enabled:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def save_model(model, path='default.pth'):
torch.save(model.state_dict(), path)
if __name__ == "__main__":
# Determine seeds
model_name = "REINFORCE"
env_name = "CartPole-v1"
seed = 10
exp_num = 'SEED_'+str(seed)
# Set gym environment
env = gym.make(env_name)
if torch.cuda.is_available():
device = torch.device("cuda")
np.random.seed(seed)
random.seed(seed)
seed_torch(seed)
env.seed(seed)
# set parameters
learning_rate = 0.0005
episodes = 100
discount_rate = 0.99
print_interval = 10
Policy = REINFORCE_graph(state_space=env.observation_space.shape[0],
action_space=env.action_space.n,
num_hidden_layer=0,
hidden_dim=128,
learning_rate=learning_rate).to(device)
score = 0
score_list = []
for epi in range(episodes):
s = env.reset()
done = False
step = 0
while not done:
# if epi%print_interval == 0:
# env.render()
# Get action
s_g = create_torch_graph_data(s)
a_prob = Policy(s_g.x.to(device), s_g.edge_index.to(device))
a_distrib = Categorical(torch.exp(a_prob))
a = a_distrib.sample()
# Interaction with Environment
s_prime, r, done, _ = env.step(a.item())
Policy.put_data((r, a_prob[0][a]))
s = s_prime
score += r
step += 1
Policy.train_net(discount_rate)
score_list.append(score)
score = 0.0
# Logging/
if epi%print_interval==0 and epi!=0:
print("# of episode :{}, avg score : {}".format(epi, sum(score_list[-print_interval:])/print_interval))
env.close()
plt.plot(score_list)
plt.title('Reward')
plt.ylabel('reward')
plt.xlabel('episode')
plt.grid()
plt.show()