-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_graph_classification.py
138 lines (130 loc) · 5.08 KB
/
run_graph_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Test rewired GNN performance on graph classifiation benchmarks.
"""
from attrdict import AttrDict
from torch_geometric.datasets import TUDataset
from torch_geometric.utils import to_networkx, from_networkx, to_dense_adj
from experiments.graph_classification import Experiment
import torch
import numpy as np
import pandas as pd
from hyperparams import get_args_from_input
from preprocessing import rewiring, sdrf, fosr, digl
mutag = list(TUDataset(root="data", name="MUTAG"))
enzymes = list(TUDataset(root="data", name="ENZYMES"))
proteins = list(TUDataset(root="data", name="PROTEINS"))
collab = list(TUDataset(root="data", name="COLLAB"))
imdb = list(TUDataset(root="data", name="IMDB-BINARY"))
reddit = list(TUDataset(root="data", name="REDDIT-BINARY"))
datasets = {"reddit": reddit, "imdb": imdb, "mutag": mutag, "enzymes": enzymes, "proteins": proteins, "collab": collab}
#datasets = {"proteins": proteins, "collab": collab}
for key in datasets:
if key in ["reddit", "imdb", "collab"]:
for graph in datasets[key]:
n = graph.num_nodes
graph.x = torch.ones((n,1))
def average_spectral_gap(dataset):
# computes the average spectral gap out of all graphs in a dataset
spectral_gaps = []
for graph in dataset:
G = to_networkx(graph, to_undirected=True)
spectral_gap = rewiring.spectral_gap(G)
spectral_gaps.append(spectral_gap)
return sum(spectral_gaps) / len(spectral_gaps)
def log_to_file(message, filename="results/graph_classification.txt"):
print(message)
file = open(filename, "a")
file.write(message)
file.close()
default_args = AttrDict({
"dropout": 0.5,
"num_layers": 4,
"hidden_dim": 64,
"learning_rate": 1e-3,
"layer_type": "R-GCN",
"display": False,
"num_trials": 100,
"eval_every": 1,
"rewiring": "fosr",
"num_iterations": 10,
"patience": 100,
"output_dim": 2,
"alpha": 0.1,
"eps": 0.001,
"dataset": None,
"last_layer_fa": False
})
hyperparams = {
"mutag": AttrDict({"output_dim": 2}),
"enzymes": AttrDict({"output_dim": 6}),
"proteins": AttrDict({"output_dim": 2}),
"collab": AttrDict({"output_dim": 3}),
"imdb": AttrDict({"output_dim": 2}),
"reddit": AttrDict({"output_dim": 2})
}
results = []
args = default_args
args += get_args_from_input()
if args.dataset:
# restricts to just the given dataset if this mode is chosen
name = args.dataset
datasets = {name: datasets[name]}
for key in datasets:
args += hyperparams[key]
train_accuracies = []
validation_accuracies = []
test_accuracies = []
energies = []
print(f"TESTING: {key} ({args.rewiring})")
dataset = datasets[key]
if args.rewiring == "fosr":
for i in range(len(dataset)):
edge_index, edge_type, _ = fosr.edge_rewire(dataset[i].edge_index.numpy(), num_iterations=args.num_iterations)
dataset[i].edge_index = torch.tensor(edge_index)
dataset[i].edge_type = torch.tensor(edge_type)
elif args.rewiring == "sdrf":
for i in range(len(dataset)):
dataset[i].edge_index, dataset[i].edge_type = sdrf.sdrf(dataset[i], loops=args.num_iterations, remove_edges=False, is_undirected=True)
elif args.rewiring == "digl":
for i in range(len(dataset)):
dataset[i].edge_index = digl.rewire(dataset[i], alpha=0.1, eps=0.05)
m = dataset[i].edge_index.shape[1]
dataset[i].edge_type = torch.tensor(np.zeros(m, dtype=np.int64))
#spectral_gap = average_spectral_gap(dataset)
for trial in range(args.num_trials):
train_acc, validation_acc, test_acc, energy = Experiment(args=args, dataset=dataset).run()
train_accuracies.append(train_acc)
validation_accuracies.append(validation_acc)
test_accuracies.append(test_acc)
energies.append(energy)
train_mean = 100 * np.mean(train_accuracies)
val_mean = 100 * np.mean(validation_accuracies)
test_mean = 100 * np.mean(test_accuracies)
energy_mean = 100 * np.mean(energies)
train_ci = 200 * np.std(train_accuracies)/(args.num_trials ** 0.5)
val_ci = 200 * np.std(validation_accuracies)/(args.num_trials ** 0.5)
test_ci = 200 * np.std(test_accuracies)/(args.num_trials ** 0.5)
energy_ci = 200 * np.std(energies)/(args.num_trials ** 0.5)
log_to_file(f"RESULTS FOR {key} ({args.rewiring}), {args.num_iterations} ITERATIONS:\n")
log_to_file(f"average acc: {test_mean}\n")
log_to_file(f"plus/minus: {test_ci}\n\n")
results.append({
"dataset": key,
"rewiring": args.rewiring,
"layer_type": args.layer_type,
"num_iterations": args.num_iterations,
"alpha": args.alpha,
"eps": args.eps,
"test_mean": test_mean,
"test_ci": test_ci,
"val_mean": val_mean,
"val_ci": val_ci,
"train_mean": train_mean,
"train_ci": train_ci,
"energy_mean": energy_mean,
"energy_ci": energy_ci,
"last_layer_fa": args.last_layer_fa
})
df = pd.DataFrame(results)
with open('results/graph_classification_fa.csv', 'a') as f:
df.to_csv(f, mode='a', header=f.tell()==0)