-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnbhd.cpp
878 lines (706 loc) · 27 KB
/
nbhd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
#include <algorithm>
#include <vector>
#include <iostream>
#include <signal.h>
extern "C" {
#include "premier.h"
#include "sort.h"
#include "kvec.h"
#include "kmer.h"
#include "numeric.h"
#include "trans.h"
#include "em.h"
#include "bitarray.h"
#include "read.h"
}
#define PMR_SPARSE_NBHD_SIZE 16
static void hmm_build_1st_nbhd_fast(data *d, read_t *read, int tmin, std::vector<kmer_t*> &k_nbhd);
static int kmer_suffix_comp_qsort(const void *a, const void *b)
{
register kmer_t *ka = *((kmer_t **) a);
register kmer_t *kb = *((kmer_t **) b);
register kbits_t sfx_a = kbits_id_of(ka), sfx_b = kbits_id_of(kb);
return (sfx_a > sfx_b) ? 1 : -1;
}
static int kmer_suffix_comp(kmer_t* ka, kmer_t* kb)
{
register kbits_t sfx_a = kbits_id_of(ka), sfx_b = kbits_id_of(kb);
return (sfx_a > sfx_b);
}
static void hmm_build_1st_nbhd_fast(data *d, read_t *read, int tmin, std::vector<kmer_t*> &k_nbhd)
{
static char BASES[5] = {'A', 'C', 'T', 'G', 'N'};
int actg_trans_count[4];
int cum_actg_trans_count[4];
int total_hmm_trans = 0;
const int kmer_len = d->opt->kmer_length;
const int num_kmers = read->length - kmer_len + 1;
const kbits_t klen_flag = (1UL << (kmer_len << 1)) - 1;
const int shift = (kmer_len - 1) << 1;
const int qmax = d->opt->max_qual_score + 1;
const int qmax2 = qmax << 1;
const int bwidth = d->opt->qscore_bin_width;
const double _uniq_tp = 0.0;
int tmax = read->length - kmer_len;
if (tmin >= tmax) return;
// starting position on reverse complement
tmin = read->length - 1 - (tmin + kmer_len - 1);
mempool_t *mp = mempool_create(MEMPOOL_DEFAULT_SIZE);
dict *kdict = d->kmer_dict;
/* reverse complement sequence */
char *rseq = (char *) calloc(read->length + 1, sizeof(char));
for (int p = 0; p < read->length; ++p) {
rseq[p] = BASES[
base_to_rc_bits(read->sequence[read->length - p - 1])];
}
char *conv_q = convert_quality_scores(read->qscore, read->length,
d->opt->qual_score_offset, bwidth, mp);
state_nbhd_t *T_nbhds = (state_nbhd_t *) mempool_nalloc(mp,
sizeof(*T_nbhds) * num_kmers, 16);
/* flag for N (not determined) base, first kmer only */
kbits_t obs_n_flag = kmer_n_base_flag(rseq, kmer_len);
kbits_t next_obs_n_flag = kmer_n_base_flag(rseq + 1, kmer_len);
/* convert string literal to numeric representation */
kbits_t observed_kmers[BITS_TO_U64(read->length << 1)];
read_seq_to_numeric(rseq, observed_kmers, read->length, kmer_len);
/* set up first kmer neighborhood */
kbits_t obs_kid = bitarray_get(observed_kmers, tmin << 1, kmer_len << 1);
ksubstr_t obs_base = kmer_effective_base(rseq[tmin+kmer_len-1]);
ksubstr_t obs_next_base = kmer_effective_base(rseq[tmin+kmer_len]);
// set the first neighborhood to be the observed kmer itself
T_nbhds[tmin].size = hmm_load_preconstructed_nbhd(
d, read->id, obs_kid,
obs_n_flag, conv_q, &T_nbhds[tmin], kmer_len, 0, kdict, mp,
&_uniq_tp);
/* initial state distribution */
for (int t = tmin; t < tmax; t++) {
int tnext_kp = t + kmer_len;
obs_next_base = kmer_effective_base(rseq[t + kmer_len]);
obs_kid = bitarray_get(observed_kmers, t << 1, kmer_len << 1);
kbits_t obs_next_kid = bitarray_get(observed_kmers, (t + 1) << 1,
kmer_len << 1);
kmer_t *obs_pk = (kmer_t *) &(dict_find(kdict,
kbits_cast_to_ptr(obs_kid))->value);
kbits_t _new_nf = ((obs_next_base >> 2) << 1) |
(obs_next_base >> 2);
next_obs_n_flag = (next_obs_n_flag >> 2) | (_new_nf << shift);
state_nbhd_t *curr_nbhd = &T_nbhds[t],
*next_nbhd = &T_nbhds[t+1];
const int dmax = d->opt->max_hamming_dist;
int t_nbhd_size = curr_nbhd->size;
kbits_t *t_states_sorted_sfx = T_nbhds[t].states_sorted_sfx;
double *t_states_alphas = T_nbhds[t].alphas;
double **t_kmer_trans_p = T_nbhds[t].kmer_trans_prob;
/* ----- II. compute one iteration of forward algorithm ----- */
/* --- II a. set up kmer neighborhood at next position --- */
memset(actg_trans_count, 0, sizeof(int) << 2);
/* one linear scan to determine # of distinct suffix,
* compute downstream actg nucleotide counts etc. */
int n_distinct_suffixes = hmm_count_distinct_suffixes(curr_nbhd,
actg_trans_count, dmax, obs_kid, obs_n_flag,
obs_next_base, d->transition_p);
curr_nbhd->n_uniq_sfx = n_distinct_suffixes;
/* number of kmers in next position */
int tnext_nbhd_size = actg_trans_count[0];
/* cumulative transition counts */
cum_actg_trans_count[0] = actg_trans_count[0];
for (int i = 1; i < 4; i++) {
tnext_nbhd_size += actg_trans_count[i];
cum_actg_trans_count[i] = cum_actg_trans_count[i-1] +
actg_trans_count[i];
}
if (tnext_nbhd_size == 0) {
mempool_destroy(mp);
return;
}
/* allocate memory given tnext_nbhd_size */
char *pmem = (char *) mempool_nalloc(mp,
nbhd_alloc_size(tnext_nbhd_size), 16);
next_nbhd->size = tnext_nbhd_size;
hmm_setup_nbhd_ptrs(next_nbhd, tnext_nbhd_size, pmem);
int kmer_idx = 0, index_pfx = 0;
register ksubstr_t mismatch_flag = ~(1UL << obs_next_base) |
~((obs_next_base >> 2) - 1UL);
for (int i = 0; i < n_distinct_suffixes; i++) {
/*
int n_common_sfx_kmers = bitarray_get_pwr2(
curr_nbhd->ba_distinct_sfx, i, 1) + 1;
*/
kbits_t _repr_kid = t_states_sorted_sfx[kmer_idx];
//kbits_t mut_flag = ((_repr_kid ^ obs_kid) | obs_n_flag) & 3UL;
kbits_t sfx_hd = bitarray_get_pwr2(curr_nbhd->ba_hamming_dist,
i, 3);
kbits_t common_sfx = kbits_suffix(_repr_kid);
/* v 4 bits v 4 bits (higher)
*
* A - - A
* C | -- k-1 substring -- | C
* T | | T
* G - - G
*/
kbits_t _tf = bitarray_get_pwr2(curr_nbhd->ba_pfx_sfx_flags,
i, 3);
kbits_t ups_trans_packed = trans_flag2packed(_tf & 15);
/* which kmers/nucleotides current suffix transition into */
kbits_t dns_trans_packed = trans_flag2packed(_tf >> 4);
int n_common_sfx_kmers = ups_trans_packed & 7;
int j = dns_trans_packed & 7;
for (dns_trans_packed >>= 3; j > 0; --j, dns_trans_packed >>= 2) {
kbits_t dns_base = dns_trans_packed & 3;
kbits_t tnext_kid = common_sfx | (dns_base << shift);
/* compute the position sorted by suffix */
int index_sfx = cum_actg_trans_count[dns_base] -
actg_trans_count[dns_base];
actg_trans_count[dns_base]--;
kmer_t *tnext_kmer = (kmer_t *) &(dict_find(kdict,
kbits_cast_to_ptr(tnext_kid))->value);
next_nbhd->kmer_ptrs[index_sfx] = tnext_kmer;
/* set up transition flag */
bitarray_set_pwr2(next_nbhd->ba_kmer_trans_flag,
index_sfx, tnext_kmer->trans_flag, 2);
/* set up Hamming distance */
bitarray_set_pwr2(next_nbhd->ba_hamming_dist,
index_sfx,
sfx_hd + ((mismatch_flag >> dns_base) & 1), 3);
next_nbhd->suffixes_order[index_pfx] = index_sfx;
next_nbhd->states_sorted_sfx[index_sfx] = tnext_kid;
index_pfx++;
}
kmer_idx += n_common_sfx_kmers;
}
obs_base = obs_next_base;
obs_n_flag = next_obs_n_flag;
}
state_nbhd_t *tmax_nbhd = &T_nbhds[tmax];
// find the reverse complements of all kmers in tmax_nbhd
for (int i = 0; i < tmax_nbhd->size; ++i) {
kbits_t rev_kid = kmer_reverse_complement(
tmax_nbhd->states_sorted_sfx[i], kmer_len);
kmer_t *rev_pk = (kmer_t *) &(dict_find(d->kmer_dict,
kbits_cast_to_ptr(rev_kid))->value);
tmax_nbhd->kmer_ptrs[i] = rev_pk;
}
if (tmax_nbhd->size > 0) {
std::copy(tmax_nbhd->kmer_ptrs,
tmax_nbhd->kmer_ptrs + tmax_nbhd->size,
std::back_inserter(k_nbhd));
std::sort(k_nbhd.begin(), k_nbhd.end(), kmer_suffix_comp);
}
destroy:
mempool_destroy(mp);
}
void hmm_build_1st_nbhd_slow(data *d, read_t *read, void *fdata)
{
const int kmer_len = d->opt->kmer_length;
const double thresh = d->opt->penalty_eta / log1p(1/d->opt->penalty_gamma);
const int dmax = 4;
const int max_tries = kmer_len * (kmer_len - 1) / 2 * 9;
int *rsel = (int *) fdata;
if (rsel != NULL && rsel[read->id] == 0) return;
mempool_t *_mp = rsel == NULL ? d->mp : d->tmpmp;
// # of mutated kmers examined/explored at each certain d level.
int d_cands_explored[dmax] = {0};
int d_max_tries[dmax+1] = {0};
d_max_tries[2] = max_tries;
for (int d = 3; d <= dmax; ++d) {
d_max_tries[d] = d_max_tries[d-1] * 3;
}
int *qorder = sort_order_char(read->qscore, kmer_len, NULL);
kbits_t obs_kid = kmer_seq_to_id(read->sequence, kmer_len);
kmer_t *pk = (kmer_t *) &(dict_find(d->kmer_dict,
kbits_cast_to_ptr(obs_kid))->value);
/* # of times a kmer and its reverse complement are observed */
double k_cexp = EXP(d->avg_initial_p[kmer_initial_index(pk,
d->uniq_kmer_init_off)]) * d->total_kmer_exp_counts;
kvec_t(kmer_t *) k_nbhd;
kv_init(k_nbhd);
/* observed kmer has zero Hamming distance */
mut_kmer_t obs_mk = {obs_kid, 0};
/* observed kmer is always in the first neighborhood */
kv_push(kmer_t *, k_nbhd, pk);
std::vector<mut_kmer_t> k_mut_cands;
/* expand the observed kmer if :
* 1) it has # occurence below threshold, or
* 2) it has no eligible transitions (removed in initialization) */
if (k_cexp < thresh || pk->trans_flag == 0) {
k_mut_cands.reserve(d_max_tries[dmax]);
k_mut_cands.push_back(obs_mk);
}
int hamming_d = 0; /* hamming distance */
int counter = 0;
int mutcand_idx = 0;
while (mutcand_idx < k_mut_cands.size()) {
mut_kmer_t mk = k_mut_cands[mutcand_idx]; //k_mut_cands.front();
int _d = _mm_popcnt_u64(mk.mut_flag);
++mutcand_idx;
//k_mut_cands.pop_front();
++d_cands_explored[_d];
if ((_d <= 2 && _d > hamming_d) ||
(_d > 2 && d_cands_explored[_d] >= d_max_tries[_d])) {
//if (_d > hamming_d) {
/* Hamming distance increased, check if we already have viable
* candidates in the neighborhood */
if (kv_size(k_nbhd) > 1) break;
hamming_d = _d;
}
for (int j = 0; j < kmer_len; j++) {
int dfs_flag = 0;
/* prioritize the loci with lower quality scores */
int i = qorder[j];
int i2 = i << 1;
/* to avoid duplicated mutations, we will only mutate position j,
* if no bits higher than j are set to 1. */
if (mk.mut_flag & ((1UL << (j+1)) - 1UL)) continue;
for (kbits_t base = 0; base < 4; ++base) {
if (base == ((mk.id >> i2) & 3)) continue;
if (base == ((obs_kid >> i2) & 3)) continue;
kbits_t mut_kid = (mk.id & ~(3UL << i2)) | (base << i2);
kbits_t mut_flag = mk.mut_flag | (1UL << j);
dictentry *de_mut = dict_find(d->kmer_dict,
kbits_cast_to_ptr(mut_kid));
if (de_mut == NULL && (_d+1) < dmax) {
/* continue searching */
mut_kmer_t new_mk = {mut_kid, mut_flag};
// breadth-first search for smaller d, due to the
// relatively low complexity; for larger d, switch to
// depth-first search to be more opportunistic (and greedy)
if (_d <= 2)
k_mut_cands.push_back(new_mk);
else {
--mutcand_idx;
k_mut_cands[mutcand_idx] = new_mk;
//k_mut_cands.push_front(new_mk);
dfs_flag = 1;
}
}
else if (de_mut != NULL) {
kmer_t *mut_pk = (kmer_t *) &(de_mut->value);
double mut_k_cexp = EXP(d->avg_initial_p[
kmer_initial_index(mut_pk, d->uniq_kmer_init_off)]) *
d->total_kmer_exp_counts;
if (mut_k_cexp > thresh && mut_pk->trans_flag != 0) {
kv_push(kmer_t *, k_nbhd, mut_pk);
}
else if ((_d + 1) < dmax) {
mut_kmer_t new_mk = {mut_kid, mut_flag};
if (_d <= 2)
k_mut_cands.push_back(new_mk);
else {
--mutcand_idx;
k_mut_cands[mutcand_idx] = new_mk;
//k_mut_cands.push_front(new_mk);
dfs_flag = 1;
}
}
}
}
if (dfs_flag) break;
}
}
/* sort the nbhd by suffix */
register int size_nbhd = kv_size(k_nbhd);
kmer_t **new_nbhd = NULL;
#pragma omp critical
{
new_nbhd = (kmer_t **) mempool_alloc(_mp,
size_nbhd * sizeof(kmer_t *));
memcpy(new_nbhd, &(kv_A(k_nbhd, 0)), size_nbhd * sizeof(kmer_t *));
}
qsort(new_nbhd, size_nbhd, sizeof(kmer_t *), kmer_suffix_comp_qsort);
d->preconstructed_nbhds[read->id] = (kmer_nbhd_t) {size_nbhd, new_nbhd};
kv_destroy(k_nbhd);
free(qorder);
}
void hmm_build_1st_nbhd(data *d, read_t *read, void *fdata)
{
const int kmer_len = d->opt->kmer_length;
const double thresh = d->opt->penalty_eta / log1p(1/d->opt->penalty_gamma);
const int qoff = d->opt->qual_score_offset;
const double valid_avg_qscore = 15.0;
int tmax = read->length - kmer_len;
kbits_t obs_kid = kmer_seq_to_id(read->sequence, kmer_len);
kmer_t *pk = (kmer_t *) &(dict_find(d->kmer_dict,
kbits_cast_to_ptr(obs_kid))->value);
int *rsel = (int *) fdata;
if (rsel != NULL && rsel[read->id] == 0) return;
mempool_t *_mp = rsel == NULL ? d->mp : d->tmpmp;
/* # of times a kmer and its reverse complement are observed */
double k_cexp = EXP(d->avg_initial_p[kmer_initial_index(pk,
d->uniq_kmer_init_off)]) * d->total_kmer_exp_counts;
std::vector<kmer_t *> k_nbhd;
double sum_qscore = 0.0;
for (int t = 0; t < kmer_len; ++t) {
sum_qscore += read->qscore[t] - qoff;
}
if (k_cexp < thresh || pk->trans_flag == 0 ||
(sum_qscore / kmer_len) < valid_avg_qscore) {
int tvalid = 1;
do {
bool valid_kmer_located = false;
for (; tvalid < tmax; ++tvalid) {
sum_qscore += (read->qscore[tvalid + kmer_len - 1] -
read->qscore[tvalid - 1]);
kbits_t _rkid = kmer_reverse_complement(
kmer_seq_to_id(read->sequence + tvalid, kmer_len),
kmer_len);
kmer_t *_rpks = (kmer_t *) &(dict_find(d->kmer_dict,
kbits_cast_to_ptr(_rkid))->value);
double avg_k_cexp = EXP(d->avg_initial_p[kmer_initial_index(_rpks,
d->uniq_kmer_init_off)]) * d->total_kmer_exp_counts;
if (avg_k_cexp > thresh && _rpks->trans_flag > 0 &&
(sum_qscore / kmer_len) >= valid_avg_qscore) {
valid_kmer_located = true;
break;
}
}
if (valid_kmer_located) {
// try a faster method to build the neighborhood.
hmm_build_1st_nbhd_fast(d, read, tvalid, k_nbhd);
if (k_nbhd.size() == 0) { // || (k_nbhd.size() == 1 &&
//k_nbhd[0] == pk)) {
// use the slower method as a fallback
//
//if (pk->trans_flag) k_nbhd.push_back(pk);
//else {
return hmm_build_1st_nbhd_slow(d, read, fdata);
//}
}
}
else {
// failed to find an "anchor" valid kmer, try the slow method
return hmm_build_1st_nbhd_slow(d, read, fdata);
}
} while(0);
}
else {
// use the observed kmer
k_nbhd.push_back(pk);
}
kmer_t **new_nbhd = NULL;
#pragma omp critical
{
new_nbhd = (kmer_t **) mempool_alloc(_mp,
k_nbhd.size() * sizeof(kmer_t *));
std::copy(k_nbhd.begin(), k_nbhd.end(), new_nbhd);
}
d->preconstructed_nbhds[read->id] = (kmer_nbhd_t) {(int) k_nbhd.size(), new_nbhd};
}
void hmm_determine_dmax(data *d, read_t *read, void *fdata)
{
const int kmer_len = d->opt->kmer_length;
int tmax = read->length - kmer_len + 1;
double thresh = d->opt->penalty_eta / log1p(1/d->opt->penalty_gamma);
dict *kdict = d->kmer_dict;
int *rsel = (int *) fdata;
if (rsel != NULL && rsel[read->id] == 0) return;
int is_prev_kcov_low = 0;
int low_kcov_span_len = 0;
std::vector<int> low_kcov_regions;
low_kcov_regions.reserve(read->length >> 1);
/* convert string literal to numeric representation */
kbits_t observed_kmers[BITS_TO_U64(read->length << 1)];
read_seq_to_numeric(read->sequence, observed_kmers, read->length, kmer_len);
double avg_k_cexp = 0.0;
double min_k_cexp = 1e6;
for (int t = 0; t < tmax; t++) {
kbits_t obs_kid = bitarray_get(observed_kmers, t << 1, kmer_len << 1);
kmer_t *obs_pk = (kmer_t *) &(dict_find(kdict,
kbits_cast_to_ptr(obs_kid))->value);
double obs_k_cexp = EXP(d->avg_initial_p[kmer_initial_index(obs_pk,
d->uniq_kmer_init_off)]) * d->total_kmer_exp_counts;
avg_k_cexp += obs_k_cexp;
if (obs_k_cexp < min_k_cexp) min_k_cexp = obs_k_cexp;
int low_kcov = (obs_k_cexp < thresh);
if (low_kcov) {
++low_kcov_span_len;
}
else {
if (low_kcov_span_len > 0) {
low_kcov_regions.push_back(low_kcov_span_len);
low_kcov_span_len = 0;
}
}
is_prev_kcov_low = low_kcov;
}
avg_k_cexp /= tmax;
if (avg_k_cexp > d->opt->kcov_q90 && min_k_cexp > thresh) {
d->read_dmax[read->id] = d->opt->max_hamming_dist >> 2;
}
else if (min_k_cexp > thresh) {
d->read_dmax[read->id] = d->opt->max_hamming_dist >> 1;
}
else {
d->read_dmax[read->id] = d->opt->max_hamming_dist;
}
d->read_dmax[read->id] = d->opt->max_hamming_dist;
}
/**
* hmm_adaptive_dmax:
*
* Choose $d_{i, t}$, the maximum Hamming distance for read $i$ at position
* $t$.
*
* This procedure precedes the EM algorithm, and is crucial to reduce the
* overall computational complexity of the HMM.
*
* It is important to note that the running time of PREMIER is dominated by a
* tiny fraction of reads which have large neighborhoods.
* For the majority of the reads, the neighborhoods are sparse, due to the
* kmer-uniqueness induced by the l0-like penalty.
* For reads with sparse neighborhoods, the complexity of the HMM is
* linear to the (average) neighborhood size; whereas reads with
* dense neighborhoods still have linear complexity, albeit with larger scaling
* constant.
*
*/
void hmm_adaptive_dmax(data *d, read_t *read, void *fdata)
{
static char BASES[5] = {'A', 'C', 'T', 'G', 'N'};
int actg_trans_count[4];
int cum_actg_trans_count[4];
int total_hmm_trans = 0;
const int skip_rebuild = (fdata != NULL);
const int kmer_len = d->opt->kmer_length;
const int num_kmers = read->length - kmer_len + 1;
const kbits_t klen_flag = (1UL << (kmer_len << 1)) - 1;
const int shift = (kmer_len - 1) << 1;
const int qmax = d->opt->max_qual_score + 1;
const int qmax2 = qmax << 1;
const int bwidth = d->opt->qscore_bin_width;
const double _uniq_tp = 0.0;
int tmin = 0;
int tmax = read->length - kmer_len;
mempool_t *mp = mempool_create(MEMPOOL_DEFAULT_SIZE);
dict *kdict = d->kmer_dict;
char *rseq = read->sequence;
char *conv_q = convert_quality_scores(read->qscore, read->length,
d->opt->qual_score_offset, bwidth, mp);
state_nbhd_t *T_nbhds = (state_nbhd_t *) mempool_nalloc(mp,
sizeof(*T_nbhds) * num_kmers, 16);
/* flag for N (not determined) base, first kmer only */
kbits_t obs_n_flag = kmer_n_base_flag(rseq, kmer_len);
kbits_t next_obs_n_flag = kmer_n_base_flag(rseq + 1, kmer_len);
/* convert string literal to numeric representation */
kbits_t observed_kmers[BITS_TO_U64(read->length << 1)];
read_seq_to_numeric(rseq, observed_kmers, read->length, kmer_len);
/* set up first kmer neighborhood */
kbits_t obs_kid = bitarray_get(observed_kmers, tmin << 1, kmer_len << 1);
ksubstr_t obs_base = kmer_effective_base(rseq[tmin+kmer_len-1]);
ksubstr_t obs_next_base = kmer_effective_base(rseq[tmin+kmer_len]);
// set the first neighborhood to be the observed kmer itself
T_nbhds[tmin].size = hmm_load_preconstructed_nbhd(
d, read->id, obs_kid,
obs_n_flag, conv_q, &T_nbhds[tmin], kmer_len, 0, kdict, mp,
&_uniq_tp);
// look-ahead window
int window_size = d->opt->hd_window_size;
// use the window size // half of the kmer length as a starting point
uint8_t dmax = kmer_len / 2;
//uint8_t dmax = window_size;
// position-dependent d_{i, w}, where w is the window index
uint8_t *d_iw = &d->read_dmax[read->id * d->n_hd_windows];
std::fill_n(d_iw, d->n_hd_windows, dmax);
const int nbhd_max_size[2] = {256, 32768};
int widx = 0;
for (int ts = tmin; ts < tmax; ts += window_size, ++widx) {
int tw = ts + window_size < tmax ? ts + window_size : tmax;
// if all quality scores within current window has quality score 2.
bool q2_flag = std::all_of(&conv_q[ts+1], &conv_q[tw+kmer_len],
[](char q) { return q == 2; });
//bool low_cov_flag = std::all_of();
int window_nbhd_size;
bool rebuild = false, dmax_adjusted = false;
bool final_k = (ts + kmer_len + 1) >= read->length;
std::vector<uint8_t> mth_nsizes;
mth_nsizes.reserve(window_size);
do {
window_nbhd_size = 0;
// build neighborhood in the next window
for (int t = ts; t < tw; ++t) {
int tnext_kp = t + kmer_len;
obs_next_base = kmer_effective_base(rseq[t + kmer_len]);
obs_kid = bitarray_get(observed_kmers, t << 1, kmer_len << 1);
kbits_t obs_next_kid = bitarray_get(observed_kmers,
(t + 1) << 1, kmer_len << 1);
kmer_t *obs_pk = (kmer_t *) &(dict_find(kdict,
kbits_cast_to_ptr(obs_kid))->value);
kbits_t _new_nf = ((obs_next_base >> 2) << 1) |
(obs_next_base >> 2);
next_obs_n_flag = (next_obs_n_flag >> 2) |
(_new_nf << shift);
state_nbhd_t *curr_nbhd = &T_nbhds[t],
*next_nbhd = &T_nbhds[t+1];
int t_nbhd_size = curr_nbhd->size;
kbits_t *t_states_sorted_sfx = T_nbhds[t].states_sorted_sfx;
double *t_states_alphas = T_nbhds[t].alphas;
double **t_kmer_trans_p = T_nbhds[t].kmer_trans_prob;
memset(actg_trans_count, 0, sizeof(int) << 2);
/* one linear scan to determine # of distinct suffix,
* compute downstream actg nucleotide counts etc. */
int n_distinct_suffixes = hmm_count_distinct_suffixes(curr_nbhd,
actg_trans_count, dmax, obs_kid, obs_n_flag,
obs_next_base, d->transition_p);
curr_nbhd->n_uniq_sfx = n_distinct_suffixes;
/* number of kmers in next position */
int tnext_nbhd_size = actg_trans_count[0];
/* cumulative transition counts */
cum_actg_trans_count[0] = actg_trans_count[0];
for (int i = 1; i < 4; i++) {
tnext_nbhd_size += actg_trans_count[i];
cum_actg_trans_count[i] = cum_actg_trans_count[i-1] +
actg_trans_count[i];
}
window_nbhd_size += tnext_nbhd_size;
if (tnext_nbhd_size == 0) {
uint64_t t0_ham_dist = T_nbhds[0].ba_hamming_dist[0];
mempool_destroy(mp);
/* given that the current read runs out of pathway, it may
* signify that the first neighborhood is incorrectly
* constructed.
* if the first neighborhood contains kmers with mismatches
* to the observed kmer, we will rebuild the first
* neighborhood with the slow method. */
if (t0_ham_dist > 0 && !skip_rebuild) {
int old_nbhd_size = d->preconstructed_nbhds[read->id].n;
kmer_t **old_nbhd = d->preconstructed_nbhds[read->id].nbhd;
#if DEBUG
fprintf(stderr,
"[DEBUG] Rebuilding first neighborhood for read [%d] %s\n",
read->id, read->identifier);
fprintf(stderr, "[DEBUG] Old nbhd: ");
for (int i = 0; i < d->preconstructed_nbhds[read->id].n; ++i) {
fprintf(stderr, "%lu ", kbits_id_of(old_nbhd[i]));
}
fprintf(stderr, "\n");
#endif
hmm_build_1st_nbhd_slow(d, read, NULL);
// if the two neighborhoods are different, restart to
// determine dmax
if (d->preconstructed_nbhds[read->id].n != old_nbhd_size) {
return hmm_adaptive_dmax(d, read, fdata);
}
else {
if (!std::equal(old_nbhd, old_nbhd + old_nbhd_size,
d->preconstructed_nbhds[read->id].nbhd))
return hmm_adaptive_dmax(d, read, fdata);
}
#if DEBUG
fprintf(stderr, "[DEBUG] New nbhd: ");
for (int i = 0; i < d->preconstructed_nbhds[read->id].n; ++i) {
fprintf(stderr, "%lu ", kbits_id_of(new_nbhd[i]));
}
fprintf(stderr, "\n");
#endif
}
return;
}
/* allocate memory given tnext_nbhd_size */
char *pmem = (char *) mempool_nalloc(mp,
nbhd_alloc_size(tnext_nbhd_size), 16);
next_nbhd->size = tnext_nbhd_size;
hmm_setup_nbhd_ptrs(next_nbhd, tnext_nbhd_size, pmem);
int kmer_idx = 0, index_pfx = 0;
register ksubstr_t mismatch_flag = ~(1UL << obs_next_base) |
~((obs_next_base >> 2) - 1UL);
bool incr_dmax = false;
for (int i = 0; i < n_distinct_suffixes; i++) {
kbits_t _repr_kid = t_states_sorted_sfx[kmer_idx];
kbits_t sfx_hd = bitarray_get_pwr2(curr_nbhd->ba_hamming_dist,
i, 3);
kbits_t common_sfx = kbits_suffix(_repr_kid);
/* v 4 bits v 4 bits (higher)
*
* A - - A
* C | -- k-1 substring -- | C
* T | | T
* G - - G
*/
kbits_t _tf = bitarray_get_pwr2(curr_nbhd->ba_pfx_sfx_flags,
i, 3);
kbits_t ups_trans_packed = trans_flag2packed(_tf & 15);
/* which kmers/nucleotides current suffix transition into */
kbits_t dns_trans_packed = trans_flag2packed(_tf >> 4);
int n_common_sfx_kmers = ups_trans_packed & 7;
int j = dns_trans_packed & 7;
for (dns_trans_packed >>= 3; j > 0; --j, dns_trans_packed >>= 2) {
kbits_t dns_base = dns_trans_packed & 3;
kbits_t tnext_kid = common_sfx | (dns_base << shift);
/* compute the position sorted by suffix */
int index_sfx = cum_actg_trans_count[dns_base] -
actg_trans_count[dns_base];
actg_trans_count[dns_base]--;
kmer_t *tnext_kmer = (kmer_t *) &(dict_find(kdict,
kbits_cast_to_ptr(tnext_kid))->value);
next_nbhd->kmer_ptrs[index_sfx] = tnext_kmer;
/* set up transition flag */
bitarray_set_pwr2(next_nbhd->ba_kmer_trans_flag,
index_sfx, tnext_kmer->trans_flag, 2);
/* set up Hamming distance */
kbits_t _hd = sfx_hd + ((mismatch_flag >> dns_base) & 1);
bitarray_set_pwr2(next_nbhd->ba_hamming_dist,
index_sfx, _hd, 3);
// if a certain kmer's Hamming distance reaches dmax,
// and it has a unique transition, and the neighborhood
// is still "sparse", increase dmax
/*
if (_hd == dmax && tnext_kmer->n_trans == 1 &&
curr_nbhd->size <= PMR_SPARSE_NBHD_SIZE) {
kbits_t _b = (trans_flag2packed(tnext_kmer->trans_flag) >> 3) & 3;
int _np = t + kmer_len + 1;
// check if an error will be emitted
if (_np < read->length &&
_b != kmer_effective_base(rseq[_np])) {
incr_dmax = true;
}
}
*/
next_nbhd->suffixes_order[index_pfx] = index_sfx;
next_nbhd->states_sorted_sfx[index_sfx] = tnext_kid;
index_pfx++;
}
kmer_idx += n_common_sfx_kmers;
}
// if (incr_dmax) ++dmax;
int _max_size = nbhd_max_size[q2_flag];
// check if the neighborhood sizes are above the upper limit,
// with two exceptions: the neighborhood size is allowed to
// grow if the entire window has low quality score (Q=2).
if (!rebuild && next_nbhd->size > _max_size) {
size_t _n = BITS_TO_U64(next_nbhd->size << 3) << 3;
uint8_t *hdist = new uint8_t[_n];
memcpy(hdist, next_nbhd->ba_hamming_dist, _n);
std::nth_element(hdist, hdist + _max_size - 1,
hdist + next_nbhd->size);
mth_nsizes.push_back(hdist[_max_size - 1]);
delete[] hdist;
}
obs_base = obs_next_base;
obs_n_flag = next_obs_n_flag;
}
if (rebuild) break;
if (mth_nsizes.size() > 0) {
auto min_hd = std::min_element(mth_nsizes.begin(), mth_nsizes.end());
// lower dmax so that the neighborhood sizes would not exceed
// the upper limit, m, and then rebuild the neighborhoods.
dmax = *min_hd;
rebuild = true;
dmax_adjusted = true;
}
} while (rebuild);
if (dmax_adjusted) {
uint8_t _d = dmax > 1 ? dmax - 1 : 1;
d_iw[widx] = _d;
// retrospectively apply a smaller dmax (for earlier windows)
// so that later windows can use slightly larger dmax, coinciding
// with the fact that error rate ticks up at 3' end.
if (_d > 1) --_d;
for (int w = widx - 1; w > 0; --w) {
if (d_iw[w] > _d) d_iw[w] = _d;
}
}
// being opportunistic, and increase dmax by 1
if (dmax < (kmer_len >> 1)) ++dmax;
}
destroy:
mempool_destroy(mp);
}