-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnet.py
115 lines (93 loc) · 3.57 KB
/
Unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torch.nn as nn
# The double convulutions required by the architecture are being performed in the below method.
def double_conv(in_c, out_c):
conv = nn.Sequential(
nn.Conv2d(in_c,out_c,kernel_size=3),
nn.ReLU(inplace = True),
nn.Conv2d(out_c,out_c,kernel_size=3),
nn.ReLU(inplace = True)
)
return conv
# This method crops the input image with the size required by the target_tensor based on the convolution level.
def crop_img(tensor, target_tensor):
target_size = target_tensor.size()[2]
tensor_size = tensor.size()[2]
delta = tensor_size - target_size
delta = delta // 2
return tensor[:,:,delta:tensor_size-delta,delta:tensor_size-delta]
# This Class holds the base implementation of the Unet model. Also, the upTranspose, down convolutions and
# Upconvolutions required by the model are implemented. The code can be further cleaned but for now, I have
# implemented the logical steps taken by the authors. Each of the convolution tasks are tagged with the
# naming convention of direction_operation_level
# ex: up_trans_1
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.max_pool_2x2 = nn.MaxPool2d(kernel_size=2, stride = 2)
self.down_conv_1 = double_conv(1, 64)
self.down_conv_2 = double_conv(64, 128)
self.down_conv_3 = double_conv(128, 256)
self.down_conv_4 = double_conv(256, 512)
self.down_conv_5 = double_conv(512, 1024)
self.up_trans_1 = nn.ConvTranspose2d(
in_channels=1024,
out_channels = 512,
kernel_size = 2,
stride = 2)
self.up_conv_1 = double_conv(1024,512)
self.up_trans_2 = nn.ConvTranspose2d(
in_channels=512,
out_channels = 256,
kernel_size = 2,
stride = 2)
self.up_conv_2 = double_conv(512,256)
self.up_trans_3 = nn.ConvTranspose2d(
in_channels=256,
out_channels = 128,
kernel_size = 2,
stride = 2)
self.up_conv_3 = double_conv(256,128)
self.up_trans_4 = nn.ConvTranspose2d(
in_channels=128,
out_channels = 64,
kernel_size = 2,
stride = 2)
self.up_conv_4 = double_conv(128,64)
self.Out = nn.Conv2d(
in_channels=64,
out_channels = 2,
kernel_size = 1
)
def forward(self, image):
# bs, c, h, w
# encoder
x1 = self.down_conv_1(image) #
x2 = self.max_pool_2x2(x1)
x3 = self.down_conv_2(x2) #
x4 = self.max_pool_2x2(x3)
x5 = self.down_conv_3(x4) #
x6 = self.max_pool_2x2(x5)
x7 = self.down_conv_4(x6) #
x8 = self.max_pool_2x2(x7)
x9 = self.down_conv_5(x8)
#decoder logic
x = self.up_trans_1(x9)
y = crop_img(x7,x)
x = self.up_conv_1(torch.cat([x,y],1))
x = self.up_trans_2(x)
y = crop_img(x5,x)
x = self.up_conv_2(torch.cat([x,y],1))
x = self.up_trans_3(x)
y = crop_img(x3,x)
x = self.up_conv_3(torch.cat([x,y],1))
x = self.up_trans_4(x)
y = crop_img(x1,x)
x = self.up_conv_4(torch.cat([x,y],1))
x = self.Out(x)
print(x.size())
return x
if __name__ == "__main__":
image = torch.rand((1, 1, 572, 572))
model = UNet()
print(model(image))