-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_kgat.py
279 lines (223 loc) · 10.7 KB
/
main_kgat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
import random
import logging
import argparse
from time import time
from tqdm import tqdm, trange
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from model.KGAT import KGAT
from utility.parser_kgat import *
from utility.log_helper import *
from utility.metrics import *
from utility.helper import *
from utility.loader_kgat import DataLoaderKGAT
# 评估的时候大部分是在cpu完成的,计算评估的底层函数都是用的numpy,应该是可以在gpu中完成,待优化
def evaluate(model, train_graph, train_user_dict, test_user_dict, user_ids_batches, item_ids, K):
model.eval()
with torch.no_grad():
att = model.compute_attention(train_graph)
train_graph.edata['att'] = att
n_users = len(test_user_dict.keys())
# item_ids_batch = item_ids
item_ids_batch = item_ids.cpu().numpy()
cf_scores = []
precision = []
recall = []
ndcg = []
with torch.no_grad():
# for user_ids_batch in user_ids_batches:
for user_ids_batch in tqdm(user_ids_batches, desc='Evaluating Iteration'):
cf_scores_batch = model('predict', train_graph, user_ids_batch, item_ids) # (n_batch_users, n_eval_items)
cf_scores_batch = cf_scores_batch.cpu()
user_ids_batch = user_ids_batch.cpu().numpy()
precision_batch, recall_batch, ndcg_batch = calc_metrics_at_k(cf_scores_batch, train_user_dict, test_user_dict, user_ids_batch, item_ids_batch, K)
cf_scores.append(cf_scores_batch.numpy())
precision.append(precision_batch)
recall.append(recall_batch)
ndcg.append(ndcg_batch)
# 如果全部返回的话占用 6.55 GiB,训练的时候电脑无法分配这么多内存,只有在预测的情况下才能
# cf_scores = np.concatenate(cf_scores, axis=0) # (70591, 24915)
cf_scores = cf_scores[0]
precision_k = sum(np.concatenate(precision)) / n_users
recall_k = sum(np.concatenate(recall)) / n_users
ndcg_k = sum(np.concatenate(ndcg)) / n_users
return cf_scores, precision_k, recall_k, ndcg_k
def train(args):
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# 创建日志文件
log_save_id = create_log_id(args.save_dir)
logging_config(folder=args.save_dir, name='log{:d}'.format(log_save_id), no_console=False)
logging.info(args)
# GPU / CPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
print('device:', device, 'n_gpu:', n_gpu)
# load data
print('load data ...')
data = DataLoaderKGAT(args, logging)
print('load data finish.')
# embedding
if args.use_pretrain == 1:
user_pre_embed = torch.tensor(data.user_pre_embed)
item_pre_embed = torch.tensor(data.item_pre_embed)
else:
user_pre_embed, item_pre_embed = None, None
user_ids = list(data.test_user_dict.keys())
user_ids_batches = [user_ids[i: i + args.test_batch_size] for i in range(0, len(user_ids), args.test_batch_size)]
user_ids_batches = [torch.LongTensor(d) for d in user_ids_batches]
if use_cuda:
user_ids_batches = [d.to(device) for d in user_ids_batches]
item_ids = torch.arange(data.n_items, dtype=torch.long)
if use_cuda:
item_ids = item_ids.to(device)
# construct model & optimizer
model = KGAT(args, data.n_users, data.n_entities, data.n_relations, user_pre_embed, item_pre_embed)
if args.use_pretrain == 2:
model = load_model(model, args.pretrain_model_path)
model.to(device)
# if n_gpu > 1:
# model = nn.parallel.DistributedDataParallel(model)
logging.info(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# move graph data to GPU
if use_cuda:
data.train_graph = data.train_graph.to(device)
# data.test_graph = data.test_graph.to(device)
train_graph = data.train_graph
# test_graph = data.test_graph
# initialize metrics
best_epoch = -1
epoch_list = []
precision_list = []
recall_list = []
ndcg_list = []
epoch = 0
# train model
for epoch in range(1, args.n_epoch + 1):
time0 = time()
model.train()
# update attention scores
with torch.no_grad():
att = model('calc_att', train_graph)
train_graph.edata['att'] = att
logging.info('Update attention scores: Epoch {:04d} | Total Time {:.1f}s'.format(epoch, time() - time0))
# train cf
time1 = time()
cf_total_loss = 0
n_cf_batch = data.n_cf_train // data.cf_batch_size + 1
for iter in range(1, n_cf_batch + 1):
time2 = time()
cf_batch_user, cf_batch_pos_item, cf_batch_neg_item = data.generate_cf_batch(data.train_user_dict)
if use_cuda:
cf_batch_user = cf_batch_user.to(device)
cf_batch_pos_item = cf_batch_pos_item.to(device)
cf_batch_neg_item = cf_batch_neg_item.to(device)
cf_batch_loss = model('calc_cf_loss', train_graph, cf_batch_user, cf_batch_pos_item, cf_batch_neg_item)
cf_batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
cf_total_loss += cf_batch_loss.item()
if (iter % args.cf_print_every) == 0:
logging.info('CF Training: Epoch {:04d} Iter {:04d} / {:04d} | Time {:.1f}s | Iter Loss {:.4f} | Iter Mean Loss {:.4f}'.format(epoch, iter, n_cf_batch, time() - time2, cf_batch_loss.item(), cf_total_loss / iter))
logging.info('CF Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(epoch, n_cf_batch, time() - time1, cf_total_loss / n_cf_batch))
# train kg
time1 = time()
kg_total_loss = 0
n_kg_batch = data.n_kg_train // data.kg_batch_size + 1
for iter in range(1, n_kg_batch + 1):
time2 = time()
kg_batch_head, kg_batch_relation, kg_batch_pos_tail, kg_batch_neg_tail = data.generate_kg_batch(data.train_kg_dict)
if use_cuda:
kg_batch_head = kg_batch_head.to(device)
kg_batch_relation = kg_batch_relation.to(device)
kg_batch_pos_tail = kg_batch_pos_tail.to(device)
kg_batch_neg_tail = kg_batch_neg_tail.to(device)
kg_batch_loss = model('calc_kg_loss', kg_batch_head, kg_batch_relation, kg_batch_pos_tail, kg_batch_neg_tail)
kg_batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
kg_total_loss += kg_batch_loss.item()
if (iter % args.kg_print_every) == 0:
logging.info('KG Training: Epoch {:04d} Iter {:04d} / {:04d} | Time {:.1f}s | Iter Loss {:.4f} | Iter Mean Loss {:.4f}'.format(epoch, iter, n_kg_batch, time() - time2, kg_batch_loss.item(), kg_total_loss / iter))
logging.info('KG Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(epoch, n_kg_batch, time() - time1, kg_total_loss / n_kg_batch))
logging.info('CF + KG Training: Epoch {:04d} | Total Time {:.1f}s'.format(epoch, time() - time0))
# evaluate cf
if (epoch % args.evaluate_every) == 0:
time1 = time()
_, precision, recall, ndcg = evaluate(model, train_graph, data.train_user_dict, data.test_user_dict, user_ids_batches, item_ids, args.K)
logging.info('CF Evaluation: Epoch {:04d} | Total Time {:.1f}s | Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(epoch, time() - time1, precision, recall, ndcg))
epoch_list.append(epoch)
precision_list.append(precision)
recall_list.append(recall)
ndcg_list.append(ndcg)
best_recall, should_stop = early_stopping(recall_list, args.stopping_steps)
if should_stop:
break
if recall_list.index(best_recall) == len(recall_list) - 1:
save_model(model, args.save_dir, epoch, best_epoch)
logging.info('Save model on epoch {:04d}!'.format(epoch))
best_epoch = epoch
# save model
# save_model(model, args.save_dir, epoch)
# logging.info('Save model on epoch {:04d}!'.format(epoch))
#
# # save metrics
# _, precision, recall, ndcg = evaluate(model, train_graph, data.train_user_dict, data.test_user_dict, user_ids_batches, item_ids, args.K)
# logging.info('Final CF Evaluation: Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(precision, recall, ndcg))
#
# epoch_list.append(epoch)
# precision_list.append(precision)
# recall_list.append(recall)
# ndcg_list.append(ndcg)
metrics = pd.DataFrame([epoch_list, precision_list, recall_list, ndcg_list]).transpose()
metrics.columns = ['epoch_idx', 'precision@{}'.format(args.K), 'recall@{}'.format(args.K), 'ndcg@{}'.format(args.K)]
metrics.to_csv(args.save_dir + '/metrics.tsv', sep='\t', index=False)
def predict(args):
# GPU / CPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# load data
data = DataLoaderKGAT(args, logging)
user_ids = list(data.test_user_dict.keys())
user_ids_batches = [user_ids[i: i + args.test_batch_size] for i in range(0, len(user_ids), args.test_batch_size)]
user_ids_batches = [torch.LongTensor(d) for d in user_ids_batches]
if use_cuda:
user_ids_batches = [d.to(device) for d in user_ids_batches]
item_ids = torch.arange(data.n_items, dtype=torch.long)
if use_cuda:
item_ids = item_ids.to(device)
# load model
model = KGAT(args, data.n_users, data.n_entities, data.n_relations)
model = load_model(model, args.pretrain_model_path)
model.to(device)
# if n_gpu > 1:
# model = nn.parallel.DistributedDataParallel(model)
# move graph data to GPU
if use_cuda:
data.train_graph = data.train_graph.to(device)
# data.test_graph = data.test_graph.to(device)
train_graph = data.train_graph
# test_graph = data.test_graph
# predict
cf_scores, precision, recall, ndcg = evaluate(model, train_graph, data.train_user_dict, data.test_user_dict, user_ids_batches, item_ids, args.K)
np.save(args.save_dir + 'cf_scores.npy', cf_scores)
print('CF Evaluation: Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(precision, recall, ndcg))
if __name__ == '__main__':
args = parse_kgat_args()
train(args)
# predict(args)