-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loading.py
399 lines (360 loc) · 13.6 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import json
from datasets import load_dataset
import numpy as np
import random
from utils import load_field_name
import csv
def preprocess_openai(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
instance = data['prompt']
instances.append(instance)
category = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
category = 1
malicious_num += 1
break
categories.append(category)
return instances, categories
def preprocess_openai_hate(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
if ('H' in list(data.keys()) and data['H']==1) or ('H2' in list(data.keys()) and data['H2']==1):
instance = data['prompt']
instances.append(instance)
categories.append(1)
flag_mal=0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
flag_mal=1
if flag_mal==0:
instance = data['prompt']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_openai_sex(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
if ('S' in list(data.keys()) and data['S']==1) or ('S3' in list(data.keys()) and data['S3']==1):
instance = data['prompt']
instances.append(instance)
categories.append(1)
flag_mal = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
flag_mal = 1
if flag_mal == 0:
instance = data['prompt']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_openai_harassment(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
if ('HR' in list(data.keys()) and data['HR']==1):
instance = data['prompt']
instances.append(instance)
categories.append(1)
flag_mal = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
flag_mal = 1
if flag_mal == 0:
instance = data['prompt']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_openai_selfharm(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
if ('SH' in list(data.keys()) and data['SH']==1):
instance = data['prompt']
instances.append(instance)
categories.append(1)
flag_mal = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
flag_mal = 1
if flag_mal == 0:
instance = data['prompt']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_openai_violence(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
if ('V' in list(data.keys()) and data['V']==1) or ('V2' in list(data.keys()) and data['V2']==1):
instance = data['prompt']
instances.append(instance)
categories.append(1)
flag_mal = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
flag_mal = 1
if flag_mal == 0:
instance = data['prompt']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_toxicchat(train=False, size=200):
dataset = load_dataset("lmsys/toxic-chat", "toxicchat0124")
if not train:
dataset = dataset['test']
instances = dataset['user_input']
categories = dataset['toxicity']
else:
dataset = dataset['train']
instances = dataset['user_input'][:size]
categories = dataset['toxicity'][:size]
return instances, categories
def preprocess_advbench_string(file_path, adv_suffix=None):
prompts, targets = [], []
categories = []
with open(file_path, mode='r') as file:
csv_reader = csv.reader(file)
next(csv_reader)
for row in csv_reader:
prom = row[0]
if adv_suffix:
prom = prom + adv_suffix
prompts.append(prom)
categories.append(1)
if len(row) > 1:
targets.append(row[1])
return prompts, categories
def preprocess_hotpot(benign_num):
instances, categories = [], []
file = 'hotpot_test_fullwiki_v1.json'
root = 'data/hotpot'
with open(os.path.join(root, file)) as f:
all_data = json.load(f)
for data in all_data[:benign_num]:
instance = data['question']
instances.append(instance)
categories.append(0)
return instances, categories
def preprocess_advbench_string_hotpot(root='data/advbench', adv_suffix=None):
instances, categories = [], []
with open(os.path.join(root, 'advbench_string_hotpot.jsonl')) as f:
lines = f.readlines()
for line in lines:
data = json.loads(line)
if data['label']==1 and adv_suffix:
instances.append(data['input'] + adv_suffix)
else:
instances.append(data['input'])
categories.append(data['label'])
return instances, categories
def preprocess_advbench_behaviour_hotpot(root='data/advbench', adv_suffix=None):
instances, categories = [], []
with open(os.path.join(root, 'advbench_behaviour_hotpot.jsonl')) as f:
lines = f.readlines()
for line in lines:
data = json.loads(line)
if data['label'] == 1 and adv_suffix:
instances.append(data['input'] + adv_suffix)
else:
instances.append(data['input'])
categories.append(data['label'])
return instances, categories
def save_data(data, file_path):
with open(file_path,'w',encoding='utf-8') as f:
for line in data:
f.write(json.dumps(line,ensure_ascii=False)+'\n')
f.flush()
return
def fuse_advbench_hotpot(adv_path, output_path, benign_num):
instance_adv, cat_adv = preprocess_advbench_string(file_path = adv_path)
instance_hotpot, cat_hotpot = preprocess_hotpot(benign_num)
instances = instance_adv + instance_hotpot
categories = cat_adv + cat_hotpot
output_data = []
for inst, cate in zip(instances, categories):
output_data.append({"input": inst, "label": cate})
save_data(output_data, output_path)
def preprocess_dro(path='./data/DRO'):
instances, categories = [], []
path_benign = os.path.join(path, 'dro_benign.txt')
path_malicious = os.path.join(path, 'dro_malicious.txt')
with open(path_benign, 'r') as file:
while True:
line = file.readline()
if not line:
break
instances.append(line)
categories.append(0)
with open(path_malicious, 'r') as file:
while True:
line = file.readline()
if not line:
break
instances.append(line)
categories.append(1)
return instances, categories
def preprocess_xstest(path='./data/XSTest/xstest_v2_prompts.csv'):
instances, categories = [], []
with open(path, mode='r') as file:
csv_reader = csv.reader(file)
next(csv_reader, None)
for row in csv_reader:
instances.append(row[3])
categories.append(int('contrast' in row[2]))
return instances, categories
def preprocess_overkill(path='./data/overkill'):
instances, categories = [], []
path_benign = os.path.join(path, 'benign.csv')
path_malicious = os.path.join(path, 'xstest_v2_prompts.csv')
with open(path_benign, mode='r') as file:
csv_reader = csv.reader(file)
next(csv_reader, None)
for row in csv_reader:
instances.append(row[0])
categories.append(0)
with open(path_malicious, mode='r') as file:
csv_reader = csv.reader(file)
next(csv_reader, None)
for row in csv_reader:
if int('contrast' in row[2]):
instances.append(row[3])
categories.append(int('contrast' in row[2]))
return instances, categories
def preprocess_ours(path='./data/ours/ours.csv'):
instances, categories = [], []
with open(path, mode='r') as file:
csv_reader = csv.reader(file)
next(csv_reader, None)
for row in csv_reader:
instances.append(','.join(row[1:]))
categories.append(int('malicious' in row[0] or 'Malicious' in row[0]))
return instances, categories
def preprocess_test(root='data/openai'):
instances, categories = [], []
with open(os.path.join(root, 'samples-1680.jsonl')) as f:
lines = f.readlines()
malicious_num = 0
for line in lines:
data = json.loads(line)
instance = data['prompt']
instances.append(instance)
category = 0
for key in data.keys():
if key != 'prompt' and data[key] != 0:
category = 1
malicious_num += 1
break
categories.append(category)
return instances, categories
def preprocess_beavertail():
instances, categories = [], []
round0_dataset = load_dataset('PKU-Alignment/BeaverTails')
test_data = round0_dataset["30k_test"]
for x in test_data:
instances.append(x['prompt']+'\n'+x['response'])
if x['is_safe']:
categories.append(0)
else:
categories.append(1)
return instances, categories
def load_data(dataset, args):
if "openai" in dataset:
return preprocess_openai()
elif "toxicchat" in dataset:
return preprocess_toxicchat()
elif dataset=='advbench_string':
return preprocess_advbench_string(file_path = './data/advbench/harmful_strings.csv', adv_suffix=args.advbench_suffix)
elif dataset=='advbench_behaviour':
return preprocess_advbench_string(file_path = './data/advbench/harmful_behaviors.csv', adv_suffix=args.advbench_suffix)
elif dataset=='advbench_string_hotpot':
return preprocess_advbench_string_hotpot(adv_suffix=args.advbench_suffix)
elif dataset=='advbench_behaviour_hotpot':
return preprocess_advbench_behaviour_hotpot(adv_suffix=args.advbench_suffix)
elif dataset=='dro':
return preprocess_dro()
elif dataset=='xstest':
return preprocess_xstest()
elif dataset=='overkill':
return preprocess_overkill()
elif dataset=='ours':
return preprocess_ours()
elif dataset=='test':
return preprocess_test()
elif dataset=='beavertail':
return preprocess_beavertail()
elif dataset=='mod_hate':
return preprocess_openai_hate()
elif dataset=='mod_sex':
return preprocess_openai_sex()
elif dataset=='mod_harassment':
return preprocess_openai_harassment()
elif dataset=='mod_selfharm':
return preprocess_openai_selfharm()
elif dataset=='mod_violence':
return preprocess_openai_violence()
else:
raise ValueError(f"Dataset {dataset} is not supported!")
def construct_pseudo_training_set(data_size, dim_list):
scores_all = []
labels = []
num_models = len(dim_list)
for i in range(data_size):
if np.random.uniform(0, 1) > 0.5:
labels.append(1)
else:
labels.append(0)
scores_one_instance = []
for j in range(num_models):
cur_scores = []
for k in range(dim_list[j]):
cur_scores.append(np.random.uniform(0, 0.1))
if labels[-1] == 1:
cur_scores[random.choice(list(range(dim_list[j])))] = np.random.uniform(0.9, 1)
scores_one_instance.append(cur_scores)
scores_all.append(scores_one_instance)
return scores_all, labels
def sample_real(data_size, model_names, dataset, args):
scores_all = []
scores_total = []
for j in range(len(model_names)):
if 'train' in dataset:
dataset = dataset.split('_')[0]
score_path = f'./cache/{model_names[j]}_{dataset}_scores.json'
with open(score_path, 'r') as file:
scores = json.load(file)
scores_total.append(scores)
instances, categories = load_data(args.dataset, args)
size_positive_negative = [int(data_size * args.pos_ratio), data_size - int(data_size * args.pos_ratio)]
for i in range(len(categories)):
if size_positive_negative[categories[i]]<=0:
continue
size_positive_negative[categories[i]] -= 1
scores_one_instance = []
for j in range(len(model_names)):
scores_one_instance.append([scores_total[j][fil][i] for fil in load_field_name(model_names[j])])
scores_all.append(scores_one_instance)
return scores_all, categories