-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcluster_wav.py
executable file
·150 lines (124 loc) · 4.62 KB
/
cluster_wav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
"""
Generate a wav for a specified cluster.
Author: Herman Kamper
Contact: [email protected]
Date: 2021
"""
from pathlib import Path
from tqdm import tqdm
import argparse
import random
import subprocess
import sys
import uuid
from eval_segmentation import get_intervals_from_dir
buckeye_audio_dir = Path("/home/kamperh/endgame/datasets/buckeye")
#-----------------------------------------------------------------------------#
# UTILITY FUNCTIONS #
#-----------------------------------------------------------------------------#
def check_argv():
"""Check the command line arguments."""
parser = argparse.ArgumentParser(
description=__doc__.strip().split("\n")[0], add_help=False
)
parser.add_argument(
"model", help="input VQ representations",
choices=["vqvae", "vqcpc", "cpc_big", "hubert"]
)
parser.add_argument("dataset", type=str, help="input dataset")
parser.add_argument(
"split", type=str, help="input split", choices=["train", "val", "test"]
)
parser.add_argument("seg_tag", type=str, help="segmentation identifier")
parser.add_argument(
"cluster_id", type=str,
help="the code or cluster, e.g. '20' or '158_111_'"
)
parser.add_argument(
"--pad", type=float, default=0.25,
help="if given, add padding between tokens (default: %(default)s)"
)
parser.add_argument(
"--no_shuffle", dest="shuffle", action="store_false",
help="do not shuffle tokens, sort them by utterance label"
)
parser.set_defaults(shuffle=True)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def cat_wavs(tokens, wav_fn, pad=None, shuffle=True):
if wav_fn.is_file():
print("Warning: Deleting {}".format(wav_fn))
wav_fn.unlink()
tmp_basename = str(uuid.uuid4())
tmp_wav = Path(tmp_basename).with_suffix(".wav")
if shuffle:
random.seed(1)
random.shuffle(tokens)
else:
tokens = sorted(tokens)
print("Writing: {}".format(wav_fn))
for utt_path, start, end in tqdm(tokens):
duration = end - start
sox_cmd = [
"sox", str(utt_path), str(tmp_wav), "trim", str(start),
str(duration)
]
if pad is not None:
sox_cmd += ["pad", "0", str(pad)]
# Cut out using sox
result = subprocess.run(sox_cmd)
assert result.returncode == 0
# Concatenate wavs
if wav_fn.is_file():
tmp_wav2 = Path(tmp_basename).with_suffix(".2.wav")
sox_cmd = ["sox", str(wav_fn), str(tmp_wav), str(tmp_wav2)]
result = subprocess.run(sox_cmd)
assert result.returncode == 0
tmp_wav2.rename(wav_fn)
tmp_wav.unlink()
else:
tmp_wav.rename(wav_fn)
#-----------------------------------------------------------------------------#
# MAIN FUNCTION #
#-----------------------------------------------------------------------------#
def main():
args = check_argv()
assert buckeye_audio_dir.is_dir(), "missing directory: {}".format(
buckeye_audio_dir
)
# Read segmentation
seg_dir = (
Path("exp")/args.model/args.dataset/args.split/args.seg_tag/"intervals"
)
segmentation_interval_dict = {}
print("Reading: {}".format(seg_dir))
assert seg_dir.is_dir(), "missing directory: {}".format(seg_dir)
segmentation_interval_dict = get_intervals_from_dir(seg_dir)
# Find matches
tokens = [] # (utt_path, start, end),
# e.g. ("datasets/buckeye/s38/s3803a.wav", 413.97, 414.50)
for utt_key in tqdm(segmentation_interval_dict):
# print(utt_key)
speaker, utt, utt_start_end = utt_key.split("_")
utt_start, utt_end = utt_start_end.split("-")
utt_start = int(utt_start)
utt_end = int(utt_end)
utt_label = speaker + utt
utt_path = (buckeye_audio_dir/speaker/utt_label).with_suffix(".wav")
for token_start, token_end, token_label in segmentation_interval_dict[
utt_key]:
if token_label == args.cluster_id:
tokens.append((
utt_path, float(utt_start + token_start)/100.,
float(utt_start + token_end)/100.
))
# # Temp
# print(tokens)
# Create wav
wav_fn = Path("{}.wav".format(args.cluster_id))
cat_wavs(tokens, wav_fn, args.pad, args.shuffle)
if __name__ == "__main__":
main()