-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
136 lines (92 loc) · 3.86 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import theano
import theano.tensor as T
import keras
from keras import backend as K
import lasagne
from loader import Loader
from keras.layers import Input, SimpleRNN, LSTM, Dense, TimeDistributed, BatchNormalization, Activation, Reshape, Flatten
from keras.models import Model
from keras.backend import categorical_crossentropy
import numpy as np
import random
class CFG:
epochs = 20
input_dim = 17
recur_layers = 1
nodes = 5
init = 'glorot_uniform'
output_dim = 3
lr = 1e-2
use_LSTM = True
def simple_LSTM_model(cfg=CFG()):
ob_input = Input(shape=(None, cfg.input_dim), name='ob_input')
prev_layer = ob_input
for r in range(cfg.recur_layers):
if cfg.use_LSTM:
prev_layer = LSTM(cfg.nodes, name='lstm_{}'.format(r+1), init=cfg.init, return_sequences=True, consume_less='gpu')(prev_layer)
else:
prev_layer = SimpleRNN(cfg.nodes, name='lstm_{}'.format(r+1), init=cfg.init, return_sequences=True)(prev_layer)
last_rnn = prev_layer
prev_layer = BatchNormalization(name='lstm_bn_{}'.format(r+1), mode=0, axis=2)(prev_layer)
prev_layer = Activation('relu')(prev_layer)
network_outputs = TimeDistributed(Dense(cfg.output_dim, name='network_outputs', init=cfg.init, activation='linear'))(prev_layer)
raw_softmax_outputs = Activation('softmax')(network_outputs)
model = Model(input=ob_input, output=[raw_softmax_outputs])
return model
def build_train_fn(model):
# cost
lr = T.scalar()
labels = K.placeholder(ndim=2, dtype='int32')
ob_input = model.inputs[0]
raw_softmax_outputs = model.outputs[0]
softmax_outputs = raw_softmax_outputs.dimshuffle((2,0,1))
softmax_outputs = softmax_outputs.reshape((softmax_outputs.shape[0], softmax_outputs.shape[1]*softmax_outputs.shape[2]))
softmax_outputs = softmax_outputs.dimshuffle((1,0))
cost = categorical_crossentropy(softmax_outputs, labels).mean()
# gradients
trainable_vars = model.trainable_weights
grads = K.gradients(cost, trainable_vars)
grads = lasagne.updates.total_norm_constraint(grads, 100)
updates = lasagne.updates.nesterov_momentum(grads, trainable_vars, lr, 0.99)
for key, val in model.updates:
updates[key] = val
# train_fn
train_fn = K.function([ob_input, labels, K.learning_phase(), lr],
[softmax_outputs, cost],
updates=updates)
return train_fn
def get_accuracy(softmax_outputs, labels):
num_classes = labels.shape[1]
pred_labels = np.argmax(softmax_outputs, axis=1)
labels = np.argmax(labels, axis=1)
correct = []
total = []
accuracy = []
for c in range(num_classes):
ind = np.where(labels==c)[0]
correct.append(np.sum(pred_labels[ind]==labels[ind]))
total.append(labels[ind].shape[0])
accuracy.append(round(100.0*correct[-1]/total[-1],3))
return correct, total, accuracy
def train(train_fn, dataset, cfg=CFG()):
for e in range(cfg.epochs):
for i, (feats, labels) in enumerate(dataset.iterate()):
softmax_outputs, cost = train_fn([feats, labels, True, cfg.lr])
correct, total, accuracy = get_accuracy(softmax_outputs, labels)
print 'Epochs: {} Cost: {:.4f} correct:{} total:{} accuracy:{}'.format(e, float(cost), correct, total, accuracy)
return
if __name__=="__main__":
np.random.seed(1)
random.seed(1)
cfg = CFG()
train_data_dir = '/afs/.ir/users/k/a/kalpit/ACM_data/'
dataset = Loader(train_data_dir)
# Model
print '##### Building Model #####'
model = simple_LSTM_model(cfg)
# Train Function
print '##### Building Train Function #####'
train_fn = build_train_fn(model)
# Training Neural Network
print '##### Training Neural Network #####'
train(train_fn, dataset, cfg)