-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
182 lines (148 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# @Filename: utils.py
# @Project: GuideNet
# @Author: jie
# @Time: 2021/3/15 5:25 PM
import os
import torch
import random
import numpy as np
import augs
import models
import datasets
import optimizers
import encoding
import criteria
from PIL import Image
__all__ = [
'AverageMeter',
'init_seed',
'init_aug',
'init_dataset',
'init_cuda',
'init_net',
'init_loss',
'init_metric',
'init_optim',
'init_lr_scheduler',
'save_state',
'resume_state',
'save_result',
]
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def config_param(model):
param_groups = []
other_params = []
for name, param in model.named_parameters():
if len(param.shape) == 1:
g = {'params': [param], 'weight_decay': 0.0}
param_groups.append(g)
else:
other_params.append(param)
param_groups.append({'params': other_params})
return param_groups
def save_state(config, model):
print('==> Saving model ...')
env_name = config.name + '_' + str(config.manual_seed)
save_path = os.path.join('checkpoints', env_name)
os.makedirs(save_path, exist_ok=True)
model_state_dict = model.state_dict()
state_dict = {
'net': model_state_dict,
}
torch.save(state_dict, os.path.join(save_path, 'result.pth'))
def resume_state(config, model):
env_name = config.name + '_' + str(config.resume_seed)
cp_path = os.path.join('checkpoints', env_name, 'result.pth')
resume_model = torch.load(cp_path)['net']
model.load_state_dict(resume_model, strict=True)
return model
def pad_rep(image, ori_size):
h, w = image.shape
oh, ow = ori_size
pl = (ow - w) // 2
pr = ow - w - pl
pt = oh - h
image_pad = np.pad(image, pad_width=((pt, 0), (pl, pr)), mode='edge')
return image_pad
def save_result(config, depths, names, ori_sizes=None):
env_name = config.name + '_' + str(config.resume_seed)
save_path = os.path.join('results', env_name)
os.makedirs(save_path, exist_ok=True)
for i in range(depths.shape[0]):
depth, name = depths[i], names[i]
if ori_sizes is not None:
depth = pad_rep(depth, ori_sizes[i])
filename = os.path.join(save_path, name)
img = (depth * 256.0).astype('uint16')
Img = Image.fromarray(img)
Img.save(filename)
def init_seed(config):
if config.manual_seed == 0:
config.manual_seed = random.randint(1, 10000)
print("Random Seed: ", config.manual_seed)
torch.initial_seed()
random.seed(config.manual_seed)
np.random.seed(config.manual_seed)
torch.manual_seed(config.manual_seed)
torch.cuda.manual_seed_all(config.manual_seed)
def init_net(config):
return getattr(models, config.model)()
def init_loss(config):
return getattr(criteria, config.loss)()
def init_metric(config):
return getattr(criteria, config.metric)()
def init_aug(aug_config):
transform = []
for x in aug_config:
print(x)
if type(x) == str:
transform.append(getattr(augs, x)())
else:
key, params = x.popitem()
transform.append(getattr(augs, key)(**params))
return augs.Compose(transform)
def init_dataset(config):
train_transform = init_aug(config.train_aug_configs)
test_transform = init_aug(config.test_aug_configs)
key, params = config.data_config.popitem()
dataset = getattr(datasets, key)
trainset = dataset(**params, mode='train', transform=train_transform)
testset = dataset(**params, mode='selval', transform=test_transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=config.batch_size,
num_workers=config.num_workers, shuffle=True, drop_last=True,
pin_memory=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=config.batch_size,
num_workers=config.num_workers, shuffle=True, drop_last=True,
pin_memory=True)
print('num_train = {}, num_test = {}'.format(len(trainset), len(testset)))
return trainloader, testloader
def init_cuda(net, criterion, metric):
torch.cuda.empty_cache()
net.cuda()
criterion.cuda()
metric.cuda()
net = encoding.parallel.DataParallelModel(net)
criterion = encoding.parallel.DataParallelCriterion(criterion)
metric = encoding.parallel.DataParallelCriterion(metric)
torch.backends.cudnn.benchmark = True
return net, criterion, metric
def init_optim(config, net):
key, params = config.optim_config.popitem()
return getattr(optimizers, key)(config_param(net), **params)
def init_lr_scheduler(config, optimizer):
key, params = config.lr_config.popitem()
return getattr(torch.optim.lr_scheduler, key)(optimizer, **params)