-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathutils.py
175 lines (138 loc) · 5.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import shutil
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
class ImbalancedDatasetSampler(torch.utils.data.sampler.Sampler):
def __init__(self, dataset, indices=None, num_samples=None):
# if indices is not provided,
# all elements in the dataset will be considered
self.indices = list(range(len(dataset))) \
if indices is None else indices
# if num_samples is not provided,
# draw `len(indices)` samples in each iteration
self.num_samples = len(self.indices) \
if num_samples is None else num_samples
# distribution of classes in the dataset
label_to_count = [0] * len(np.unique(dataset.targets))
for idx in self.indices:
label = self._get_label(dataset, idx)
label_to_count[label] += 1
beta = 0.9999
effective_num = 1.0 - np.power(beta, label_to_count)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
# weight for each sample
weights = [per_cls_weights[self._get_label(dataset, idx)]
for idx in self.indices]
self.weights = torch.DoubleTensor(weights)
def _get_label(self, dataset, idx):
return dataset.targets[idx]
def __iter__(self):
return iter(torch.multinomial(self.weights, self.num_samples, replacement=True).tolist())
def __len__(self):
return self.num_samples
def calc_confusion_mat(val_loader, model, args):
model.eval()
all_preds = []
all_targets = []
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
_, pred = torch.max(output, 1)
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
cf = confusion_matrix(all_targets, all_preds).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
print('Class Accuracy : ')
print(cls_acc)
classes = [str(x) for x in args.cls_num_list]
plot_confusion_matrix(all_targets, all_preds, classes)
plt.savefig(os.path.join(args.root_log, args.store_name, 'confusion_matrix.png'))
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
def prepare_folders(args):
folders_util = [args.root_log, args.root_model,
os.path.join(args.root_log, args.store_name),
os.path.join(args.root_model, args.store_name)]
for folder in folders_util:
if not os.path.exists(folder):
print('creating folder ' + folder)
os.mkdir(folder)
def save_checkpoint(args, state, is_best):
filename = '%s/%s/ckpt.pth.tar' % (args.root_model, args.store_name)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('pth.tar', 'best.pth.tar'))
class AverageMeter(object):
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res