-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_base.py
290 lines (238 loc) · 10.3 KB
/
train_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- coding: utf-8 -*-
import os
import shutil
import argparse
import time
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as trn
import torchvision.datasets as dset
import torch.nn.functional as F
from models.wrn import WideResNet
from utils.tools import (create_logger, SummaryWriter,
restart_from_checkpoint,
AverageMeter, PaceAverageMeter)
if __package__ is None:
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
parser = argparse.ArgumentParser(description='Trains a CIFAR Classifier with OE',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dataset', type=str, choices=['cifar100'],
help='Choose between CIFAR-100.')
parser.add_argument('--model', '-m', type=str, default='allconv',
choices=['allconv', 'wrn'], help='Choose architecture.')
# Optimization options
parser.add_argument('--epochs', '-e', type=int, default=100, help='Number of epochs to train.')
parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The initial learning rate.')
parser.add_argument('--batch_size', '-b', type=int, default=128, help='Batch size.')
parser.add_argument('--oe_batch_size', type=int, default=256, help='Batch size.')
parser.add_argument('--test_bs', type=int, default=200)
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float, default=0.0005, help='Weight decay (L2 penalty).')
# WRN Architecture
parser.add_argument('--layers', default=40, type=int, help='total number of layers')
parser.add_argument('--widen-factor', default=2, type=int, help='widen factor')
parser.add_argument('--droprate', default=0.3, type=float, help='dropout probability')
# Checkpoints
parser.add_argument('--save', '-s', type=str, default='./snapshots/oe_scratch', help='Folder to save checkpoints.')
parser.add_argument('--resume', '-l', type=str, default=None, help='Checkpoint path to resume / test.')
parser.add_argument('--test', '-t', action='store_true', help='Test only flag.')
parser.add_argument('--ckp-freq', type=int, default=10, help='Save the model periodically')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--prefetch', type=int, default=4, help='Pre-fetching threads.')
# Random seed
parser.add_argument("--seed", type=int, default=0, help="seed")
def main():
args = parser.parse_args()
# Make save directory
os.makedirs(os.path.join(args.save, 'logs'), exist_ok=True)
os.makedirs(os.path.join(args.save, 'checkpoints'), exist_ok=True)
state = {k: v for k, v in args._get_kwargs()}
# create logger and tensorboard writer
global logger
logger = create_logger(
os.path.join(args.save, 'logs', 'train.log'), 0)
global writer
writer = SummaryWriter(args.save)
logger.info(state)
# set seed
if args.seed:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
# mean and standard deviation of channels of CIFAR-10 images
mean = [x / 255. for x in [125.3, 123.0, 113.9]]
std = [x / 255. for x in [63.0, 62.1, 66.7]]
# Create training and val dataset
train_transform = trn.Compose([
trn.RandomHorizontalFlip(),
trn.RandomCrop(32, padding=4),
trn.ToTensor(),
trn.Normalize(mean, std)])
test_transform = trn.Compose([
trn.ToTensor(),
trn.Normalize(mean, std)])
train_data_in = dset.CIFAR100('data/cifarpy', train=True, transform=train_transform)
test_data = dset.CIFAR100('data/cifarpy', train=False, transform=test_transform)
num_classes = 100
args.num_classes = num_classes
logger.info(f"=> Load inlier data ({args.dataset}): {len(train_data_in)} images")
# Create dataloader
train_loader_in = torch.utils.data.DataLoader(
train_data_in,
batch_size=args.batch_size, shuffle=True,
num_workers=args.prefetch, pin_memory=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.batch_size, shuffle=False,
num_workers=args.prefetch, pin_memory=True, drop_last=True)
# Create model
logger.info("=> creating model '{}'".format(args.model))
if args.model == 'wrn':
net = WideResNet(
args.layers,
num_classes,
args.widen_factor,
dropRate=args.droprate)
if args.ngpu > 1:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
if args.ngpu > 0:
net.cuda()
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True # fire on all cylinders
optimizer = torch.optim.SGD(
net.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: cosine_annealing(
step,
args.epochs * len(train_loader_in),
1, # since lr_lambda computes multiplicative factor
1e-6 / args.learning_rate))
# Restore model if desired
to_restore = {"epoch": 0}
resume_path = os.path.join(args.save, "checkpoint.pth.tar")
if args.resume is not None:
resume_path = args.resume
restart_from_checkpoint(
resume_path,
run_variables=to_restore,
state_dict=net,
optimizer=optimizer,
scheduler=scheduler)
start_epoch = to_restore["epoch"]
if args.test:
test()
print(state)
exit()
logger.info('=> Beginning training')
# Main loop
for epoch in range(start_epoch, args.epochs):
state['epoch'] = epoch
train(train_loader_in, net, optimizer, scheduler, state, args)
test(test_loader, net, state)
# Save model
save_dict = {
'epoch': epoch + 1,
'model': args.model,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}
torch.save(save_dict, os.path.join(args.save, "checkpoint.pth.tar"))
if (epoch + 1) % args.ckp_freq == 0 or (epoch + 1) == args.epochs:
shutil.copyfile(
os.path.join(args.save, "checkpoint.pth.tar"),
os.path.join(args.save, 'checkpoints', "ckp-" + str(epoch) + ".pth"),
)
# train function
def train(train_loader_in, net, optimizer, scheduler, state, args):
net.train() # enter train mode
epoch = state['epoch']
sample_number = len(train_loader_in)
left_time = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
ce_losses = PaceAverageMeter(pace=200)
losses = PaceAverageMeter(pace=200)
top1 = PaceAverageMeter(pace=200)
end = time.time()
for it, in_set in enumerate(train_loader_in):
data_time.update(time.time() - end)
data = in_set[0]
target = in_set[1]
in_bs = target.size(0)
data, target = data.cuda(), target.cuda()
# forward
x, feat = net(data, return_feat=True)
# cross entropy loss
ce_loss = F.cross_entropy(x[:in_bs], target)
loss = ce_loss
ce_losses.update(ce_loss.item(), data.size(0))
acc1, acc5 = accuracy(x[:len(in_set[0]), :args.num_classes], target, topk=(1, 5))
losses.update(loss.item(), data.size(0))
top1.update(acc1[0], data.size(0))
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
left_time.update(batch_time.val * ((args.epochs - epoch) * len(train_loader_in) - it) / 3600.0)
end = time.time()
if (it + 1) % 50 == 0:
log_str = ''
log_str += f"Epoch: [{epoch}][{it + 1}/{sample_number}]\t"
log_str += f"Left Time {left_time.val:.3f} ({left_time.avg:.3f})\t"
log_str += f"Loss {losses.val:.4f} ({losses.avg:.4f})\t"
log_str += f"CE Loss {ce_losses.val:.4f} ({ce_losses.avg:.4f})\t"
log_str += f"Error@1 {(1. - top1.val) * 100:.4f} ({(1. - top1.avg) * 100:.4f})\t"
log_str += f"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
log_str += f"Data {data_time.val:.3f} ({data_time.avg:.3f})\t"
log_str += f"Lr: {optimizer.param_groups[0]['lr']:.4f}"
logger.info(log_str)
total_it = epoch * sample_number + it
writer.log(iter=total_it, tag='train/loss', val=losses.avg)
writer.log(iter=total_it, tag='train/ce_loss', val=ce_losses.avg)
writer.log(iter=total_it, tag='train/err@1', val=1. - top1.avg)
writer.log(iter=total_it, tag='train/lr', val=optimizer.param_groups[0]["lr"])
# test function
def test(test_loader, net, state):
net.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
# forward
output = net(data)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum().item()
test_accuracy = correct / len(test_loader.dataset)
logger.info(f'Eval: * Error@1 {(1. - test_accuracy) * 100.:.3f}')
writer.log(iter=state['epoch'], tag='eval/err@1', val=(1. - test_accuracy) * 100.)
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(1.0 / batch_size))
return res
if __name__ == '__main__':
main()