-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_cor.py
286 lines (233 loc) · 12.5 KB
/
test_cor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import sys
import os
import pickle
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as trn
import torchvision.datasets as dset
import torch.nn.functional as F
from models.wrn import WideResNet
from utils.tools import create_logger
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# go through rigamaroo to do ...utils.display_results import show_performance
if __package__ is None:
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
from utils.display_results import show_performance, get_measures, print_measures, print_measures_with_std
import utils.svhn_loader as svhn
import utils.lsun_loader as lsun_loader
parser = argparse.ArgumentParser(description='Evaluates a CIFAR OOD Detector',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Setup
parser.add_argument('--test_bs', type=int, default=200)
parser.add_argument('--num_to_avg', type=int, default=1, help='Average measures across num_to_avg runs.')
parser.add_argument('--validate', '-v', action='store_true', help='Evaluate performance on validation distributions.')
parser.add_argument('--method_name', '-m', type=str, default='cifar10_allconv_baseline', help='Method name.')
parser.add_argument('--queue-len', default=256, type=int, help='mmd-weight')
# Loading details
parser.add_argument('--layers', default=40, type=int, help='total number of layers')
parser.add_argument('--widen-factor', default=2, type=int, help='widen factor')
parser.add_argument('--droprate', default=0.3, type=float, help='dropout probability')
parser.add_argument('--save', type=str, default=None, help='Checkpoint path to resume / test.')
parser.add_argument('--load', '-l', type=str, default=None, help='Checkpoint path to resume / test.')
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--prefetch', type=int, default=4, help='Pre-fetching threads.')
def main():
args = parser.parse_args()
# create logger
global logger
logger = create_logger(
os.path.join(args.save, 'logs', 'test_cor.log'), 0)
# mean and standard deviation of channels of CIFAR-10 images
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
test_transform = trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)])
if 'cifar10_' in args.method_name:
test_data = dset.CIFAR10('data/cifarpy', train=False, transform=test_transform)
train_data = dset.CIFAR10('data/cifarpy', train=True, transform=test_transform)
num_classes = 10
else:
test_data = dset.CIFAR100('data/cifarpy', train=False, transform=test_transform)
train_data = dset.CIFAR100('data/cifarpy', train=True, transform=test_transform)
num_classes = 100
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.test_bs, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_bs, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
# Create model
logger.info("=> creating model '{}'".format(args.method_name))
if 'wrn' in args.method_name:
net = WideResNet(
args.layers,
num_classes,
args.widen_factor, dropRate=args.droprate)
# Restore model
if args.load:
checkpoint = torch.load(args.load)
if 'state_dict' in checkpoint:
net.load_state_dict(checkpoint['state_dict'])
else:
net.load_state_dict(checkpoint)
logger.info("=> loaded checkpoint '{}'".format(args.load))
# create csv
csv_dir = os.path.join(args.save, 'test', 'cor.csv')
with open(csv_dir, 'w') as f:
f.write('data,top1,fpr95,auroc,aupr\n')
f.close()
if args.ngpu > 1:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
if args.ngpu > 0:
net.cuda()
# torch.cuda.manual_seed(1)
net.eval()
cudnn.benchmark = True # fire on all cylinders
# /////////////// Detection Prelims ///////////////
ood_num_examples = len(test_data) // 5
expected_ap = ood_num_examples / (ood_num_examples + len(test_data))
concat = lambda x: np.concatenate(x, axis=0)
to_np = lambda x: x.data.cpu().numpy()
def get_ood_scores(loader, in_dist=False, in_cluster=None, in_test=False):
_score = []
_feat = []
_target = []
_right_score = []
_wrong_score = []
with torch.no_grad():
for batch_idx, (data, target) in enumerate(loader):
if batch_idx >= ood_num_examples // args.test_bs and in_test is False:
break
data = data.cuda()
output, feat = net(data, return_feat=True)
_num_classes = output.size(-1)
if in_cluster is None:
# sfm metric
smax = F.softmax(output, dim=1)
_score.append(-np.max(to_np(smax), axis=1))
else:
# cor metric: refer to Eq.(11)
score = torch.mm(feat, in_cluster.t()).abs() # (N, C)
max_score, _ = score.max(dim=1)
_score.append(-to_np(max_score))
if in_dist:
smax_in = to_np(F.softmax(output[:, :num_classes], dim=1))
preds = np.argmax(smax_in, axis=1)
targets = target.numpy().squeeze()
right_indices = preds == targets
wrong_indices = np.invert(right_indices)
_feat.append(feat)
_target.append(target)
_right_score.append(-np.max(smax_in[right_indices, :num_classes], axis=1))
_wrong_score.append(-np.max(smax_in[wrong_indices, :num_classes], axis=1))
if in_dist:
_feat = torch.cat(_feat, dim=0)
_target = torch.cat(_target, dim=0)
unique_cls = _target.unique()
cls_cluster = []
for c in unique_cls:
c_inds = (_target == c)
cls_cluster.append(_feat[c_inds, :].mean(dim=0, keepdim=True))
cls_cluster = torch.cat(cls_cluster, dim=0)
if in_dist:
return concat(_score).copy(), concat(_right_score).copy(), concat(_wrong_score).copy(), cls_cluster
else:
if in_test:
return concat(_score).copy()
else:
return concat(_score)[:ood_num_examples].copy()
_, _, _, in_cluster = get_ood_scores(train_loader, in_dist=True, in_test=True)
in_score, right_score, wrong_score, _ = get_ood_scores(test_loader, in_dist=True, in_test=True)
in_score = get_ood_scores(test_loader, in_cluster=in_cluster, in_test=True)
num_right = len(right_score)
num_wrong = len(wrong_score)
top1_err = num_wrong / (num_wrong + num_right)
logger.info('=> * Error Rate {:.2f}'.format(100 * top1_err))
# /////////////// End Detection Prelims ///////////////
logger.info('=> Using CIFAR-10 as typical data') if num_classes == 10 else logger.info('=> Using CIFAR-100 as typical data')
# /////////////// Error Detection ///////////////
logger.info('=> Error Detection')
show_performance(wrong_score, right_score, method_name=args.method_name, logger=logger)
# /////////////// OOD Detection ///////////////
auroc_list, aupr_list, fpr_list = [], [], []
def get_and_print_results(ood_loader, num_to_avg=args.num_to_avg, in_cluster=None):
aurocs, auprs, fprs = [], [], []
for _ in range(num_to_avg):
out_score = get_ood_scores(ood_loader, in_cluster=in_cluster)
measures = get_measures(out_score, in_score)
aurocs.append(measures[0]); auprs.append(measures[1]); fprs.append(measures[2])
auroc = np.mean(aurocs); aupr = np.mean(auprs); fpr = np.mean(fprs)
auroc_list.append(auroc); aupr_list.append(aupr); fpr_list.append(fpr)
if num_to_avg >= 5:
print_measures_with_std(aurocs, auprs, fprs, args.method_name, logger=logger)
else:
print_measures(auroc, aupr, fpr, args.method_name, logger=logger)
return dict(fpr95=fpr, auroc=auroc, aupr=aupr)
# /////////////// Textures ///////////////
ood_data = dset.ImageFolder(root="data/dtd/images",
transform=trn.Compose([trn.Resize(32), trn.CenterCrop(32),
trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
logger.info('=> Texture Detection')
results = get_and_print_results(ood_loader, in_cluster=in_cluster)
with open(csv_dir, 'a') as f:
f.write(f'Texture,{top1_err:02f},{results["fpr95"]:02f},{results["auroc"]:02f},{results["aupr"]:02f}\n')
f.close()
# /////////////// SVHN ///////////////
ood_data = svhn.SVHN(root='data/svhn/', split="test",
transform=trn.Compose([trn.Resize(32), trn.ToTensor(), trn.Normalize(mean, std)]),
download=False)
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
logger.info('=> SVHN Detection')
results = get_and_print_results(ood_loader, in_cluster=in_cluster)
with open(csv_dir, 'a') as f:
f.write(f'SVHN,{top1_err:02f},{results["fpr95"]:02f},{results["auroc"]:02f},{results["aupr"]:02f}\n')
f.close()
# /////////////// Places365 ///////////////
ood_data = dset.ImageFolder(root="data/place365/test",
transform=trn.Compose([trn.Resize(32), trn.CenterCrop(32),
trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
logger.info('=> Places365 Detection')
results = get_and_print_results(ood_loader, in_cluster=in_cluster)
with open(csv_dir, 'a') as f:
f.write(f'Places365,{top1_err:02f},{results["fpr95"]:02f},{results["auroc"]:02f},{results["aupr"]:02f}\n')
f.close()
# /////////////// LSUN ///////////////
ood_data = lsun_loader.LSUN("data/lsun", classes='test',
transform=trn.Compose([trn.Resize(32), trn.CenterCrop(32),
trn.ToTensor(), trn.Normalize(mean, std)]))
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
logger.info('=> LSUN Detection')
results = get_and_print_results(ood_loader, in_cluster=in_cluster)
with open(csv_dir, 'a') as f:
f.write(f'LSUN,{top1_err:02f},{results["fpr95"]:02f},{results["auroc"]:02f},{results["aupr"]:02f}\n')
f.close()
# /////////////// CIFAR Data ///////////////
if 'cifar10_' in args.method_name:
ood_data = dset.CIFAR100('data/cifarpy', train=False, transform=test_transform)
else:
ood_data = dset.CIFAR10('data/cifarpy', train=False, transform=test_transform)
ood_loader = torch.utils.data.DataLoader(ood_data, batch_size=args.test_bs, shuffle=True,
num_workers=args.prefetch, pin_memory=True)
cifar_name = 'CIFAR-10' if 'cifar100' in args.method_name else 'CIFAR-100'
logger.info(f'=> {cifar_name} Detection')
results = get_and_print_results(ood_loader, in_cluster=in_cluster)
with open(csv_dir, 'a') as f:
f.write(f'{cifar_name},{top1_err:02f},{results["fpr95"]:02f},{results["auroc"]:02f},{results["aupr"]:02f}\n')
f.close()
# /////////////// Mean Results ///////////////
logger.info('=> Mean Test Results')
print_measures(np.mean(auroc_list), np.mean(aupr_list), np.mean(fpr_list), method_name=args.method_name, logger=logger)
with open(csv_dir, 'a') as f:
f.write(f'Mean,{top1_err:02f},{np.mean(fpr_list):02f},{np.mean(auroc_list):02f},{np.mean(aupr_list):02f}\n')
f.close()
if __name__ == '__main__':
main()