-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdistill.py
514 lines (391 loc) · 23.7 KB
/
distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils
from tqdm import tqdm
from utils import augment, get_dataset, get_network, get_eval_pool, evaluate_synset, get_time, DiffAugment, DiffAugmentList, ParamDiffAug
import wandb
import copy
import random
from reparam_module import ReparamModule
from torch.utils.data import Subset
from torch.utils.data import DataLoader
from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
def main(args):
if args.zca and args.texture:
raise AssertionError("Cannot use zca and texture together")
if args.texture and args.pix_init == "real":
print("WARNING: Using texture with real initialization will take a very long time to smooth out the boundaries between images.")
if args.max_experts is not None and args.max_files is not None:
args.total_experts = args.max_experts * args.max_files
print("CUDNN STATUS: {}".format(torch.backends.cudnn.enabled))
args.dsa = True if args.dsa == 'True' else False
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_it_pool = np.arange(0, args.Iteration + 1, args.eval_it).tolist()
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader, loader_train_dict, class_map, class_map_inv = get_dataset(args.dataset, args.data_path, args.batch_real, args=args)
model_eval_pool = get_eval_pool(args.eval_mode, args.model, args.model)
im_res = im_size[0]
args.im_size = im_size
accs_all_exps = dict() # record performances of all experiments
for key in model_eval_pool:
accs_all_exps[key] = []
data_save = []
if args.dsa:
# args.epoch_eval_train = 1000
args.dc_aug_param = None
args.dsa_param = ParamDiffAug()
dsa_params = args.dsa_param
if args.zca:
zca_trans = args.zca_trans
else:
zca_trans = None
wandb.init(sync_tensorboard=False,
project="DatasetDistillation",
job_type="CleanRepo",
config=args,
)
args = type('', (), {})()
for key in wandb.config._items:
setattr(args, key, wandb.config._items[key])
args.dsa_param = dsa_params
args.zca_trans = zca_trans
if args.batch_syn is None:
args.batch_syn = num_classes * args.ipc
args.distributed = torch.cuda.device_count() > 1
print('Hyper-parameters: \n', args.__dict__)
print('Evaluation model pool: ', model_eval_pool)
''' organize the real dataset '''
indices_class = [[] for c in range(num_classes)]
# Build label to index map
print("---------------Build label to index map--------------")
# For machines with limited RAM, it's impossible to load all ImageNet or even TinyImageNet into memory.
# Even if it's possible, it will take too long to process.
# Therefore we pregenerate an indices to image map and use this map to quickly random samples from ImageNet or TinyImageNet dataset.
if args.dataset == 'ImageNet':
indices_class = np.load('indices/imagenet_indices_class.npy', allow_pickle=True)
elif args.dataset == 'Tiny':
indices_class = np.load('indices/tiny_indices_class.npy', allow_pickle=True)
else:
for i, data in tqdm(enumerate(dst_train)):
indices_class[data[1]].append(i)
# for c in range(num_classes):
# print('class c = %d: %d real images'%(c, len(indices_class[c])))
def get_images(c, n): # get random n images from class c
idx_shuffle = np.random.permutation(indices_class[c])[:n]
subset = Subset(dst_train, idx_shuffle)
data_loader = DataLoader(subset, batch_size=n)
# only read the first batch which has n(IPC) number of images.
for data in data_loader:
return data[0].to("cpu")
''' initialize the synthetic data '''
label_syn = torch.tensor([np.ones(args.ipc)*i for i in range(num_classes)], dtype=torch.long, requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
if args.texture:
image_syn = torch.randn(size=(num_classes * args.ipc, channel, im_size[0]*args.canvas_size, im_size[1]*args.canvas_size), dtype=torch.float)
else:
image_syn = torch.randn(size=(num_classes * args.ipc, channel, im_size[0], im_size[1]), dtype=torch.float)
syn_lr = torch.tensor(args.lr_teacher).to(args.device)
if args.pix_init == 'real':
print('initialize synthetic data from random real images')
for c in range(num_classes):
image_syn.data[c * args.ipc:(c + 1) * args.ipc] = get_images(c, args.ipc).detach().data
else:
print('initialize synthetic data from random noise')
''' training '''
image_syn = image_syn.detach().to(args.device).requires_grad_(True)
print(image_syn.shape)
syn_lr = syn_lr.detach().to(args.device).requires_grad_(True)
optimizer_img = torch.optim.SGD([image_syn], lr=args.lr_img, momentum=0.5)
optimizer_lr = torch.optim.SGD([syn_lr], lr=args.lr_lr, momentum=0.5)
optimizer_img.zero_grad()
optimizer_lr.zero_grad()
criterion = nn.CrossEntropyLoss().to(args.device)
print('%s training begins'%get_time())
expert_dir = os.path.join(args.buffer_path, args.dataset)
if args.dataset in ["CIFAR10", "CIFAR100"] and not args.zca:
expert_dir += "_NO_ZCA"
expert_dir = os.path.join(expert_dir, args.model)
print("Expert Dir: {}".format(expert_dir))
if not args.random_trajectory:
if args.load_all:
buffer = []
n = 0
while os.path.exists(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n))):
buffer = buffer + torch.load(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n)))
n += 1
if n == 0:
raise AssertionError("No buffers detected at {}".format(expert_dir))
else:
expert_files = []
n = 0
while os.path.exists(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n))):
expert_files.append(os.path.join(expert_dir, "replay_buffer_{}.pt".format(n)))
n += 1
if n == 0:
raise AssertionError("No buffers detected at {}".format(expert_dir))
file_idx = 0
expert_idx = 0
random.shuffle(expert_files)
if args.max_files is not None:
expert_files = expert_files[:args.max_files]
print("loading file {}".format(expert_files[file_idx]))
buffer = torch.load(expert_files[file_idx])
if args.max_experts is not None:
buffer = buffer[:args.max_experts]
random.shuffle(buffer)
best_acc = {m: 0 for m in model_eval_pool}
best_std = {m: 0 for m in model_eval_pool}
for it in range(0, args.Iteration+1):
save_this_it = False
# writer.add_scalar('Progress', it, it)
wandb.log({"Progress": it}, step=it)
''' Evaluate synthetic data '''
if it in eval_it_pool and args.eval_it > 0:
for model_eval in model_eval_pool:
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s, iteration = %d'%(args.model, model_eval, it))
if args.dsa:
print('DSA augmentation strategy: \n', args.dsa_strategy)
print('DSA augmentation parameters: \n', args.dsa_param.__dict__)
else:
print('DC augmentation parameters: \n', args.dc_aug_param)
accs_test = []
accs_train = []
for it_eval in range(args.num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size).to(args.device) # get a random model
eval_labs = label_syn
with torch.no_grad():
image_save = image_syn
image_syn_eval, label_syn_eval = copy.deepcopy(image_save.detach()), copy.deepcopy(eval_labs.detach()) # avoid any unaware modification
args.lr_net = syn_lr.item()
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader, args, texture=args.texture)
accs_test.append(acc_test)
accs_train.append(acc_train)
accs_test = np.array(accs_test)
accs_train = np.array(accs_train)
acc_test_mean = np.mean(accs_test)
acc_test_std = np.std(accs_test)
if acc_test_mean > best_acc[model_eval]:
best_acc[model_eval] = acc_test_mean
best_std[model_eval] = acc_test_std
save_this_it = True
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------'%(len(accs_test), model_eval, acc_test_mean, acc_test_std))
wandb.log({'Accuracy/{}'.format(model_eval): acc_test_mean}, step=it)
wandb.log({'Max_Accuracy/{}'.format(model_eval): best_acc[model_eval]}, step=it)
wandb.log({'Std/{}'.format(model_eval): acc_test_std}, step=it)
wandb.log({'Max_Std/{}'.format(model_eval): best_std[model_eval]}, step=it)
if it in eval_it_pool and (save_this_it or it % 1000 == 0) and args.eval_it > 0:
with torch.no_grad():
image_save = image_syn.cuda()
save_dir = os.path.join(".", "logged_files", args.dataset, 'offline' if wandb.run.name is None else wandb.run.name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(image_save.cpu(), os.path.join(save_dir, "images_{}.pt".format(it)))
torch.save(label_syn.cpu(), os.path.join(save_dir, "labels_{}.pt".format(it)))
if save_this_it:
torch.save(image_save.cpu(), os.path.join(save_dir, "images_best.pt".format(it)))
torch.save(label_syn.cpu(), os.path.join(save_dir, "labels_best.pt".format(it)))
wandb.log({"Pixels": wandb.Histogram(torch.nan_to_num(image_syn.detach().cpu()))}, step=it)
if args.ipc < 50 or args.force_save:
upsampled = image_save
if args.dataset != "ImageNet":
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Synthetic_Images": wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=it)
wandb.log({'Synthetic_Pixels': wandb.Histogram(torch.nan_to_num(image_save.detach().cpu()))}, step=it)
for clip_val in [2.5]:
std = torch.std(image_save)
mean = torch.mean(image_save)
upsampled = torch.clip(image_save, min=mean-clip_val*std, max=mean+clip_val*std)
if args.dataset != "ImageNet":
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Clipped_Synthetic_Images/std_{}".format(clip_val): wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=it)
if args.zca:
image_save = image_save.to(args.device)
image_save = args.zca_trans.inverse_transform(image_save)
image_save.cpu()
torch.save(image_save.cpu(), os.path.join(save_dir, "images_zca_{}.pt".format(it)))
upsampled = image_save
if args.dataset != "ImageNet":
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Reconstructed_Images": wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=it)
wandb.log({'Reconstructed_Pixels': wandb.Histogram(torch.nan_to_num(image_save.detach().cpu()))}, step=it)
for clip_val in [2.5]:
std = torch.std(image_save)
mean = torch.mean(image_save)
upsampled = torch.clip(image_save, min=mean - clip_val * std, max=mean + clip_val * std)
if args.dataset != "ImageNet":
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Clipped_Reconstructed_Images/std_{}".format(clip_val): wandb.Image(
torch.nan_to_num(grid.detach().cpu()))}, step=it)
wandb.log({"Synthetic_LR": syn_lr.detach().cpu()}, step=it)
student_net = get_network(args.model, channel, num_classes, im_size, dist=False).to(args.device) # get a random model
student_net = ReparamModule(student_net)
if args.distributed:
student_net = torch.nn.DataParallel(student_net)
student_net.train()
if not args.random_trajectory:
if args.load_all:
expert_trajectory = buffer[np.random.randint(0, len(buffer))]
else:
expert_trajectory = buffer[expert_idx]
expert_idx += 1
if expert_idx == len(buffer):
expert_idx = 0
file_idx += 1
if file_idx == len(expert_files):
file_idx = 0
random.shuffle(expert_files)
print("loading file {}".format(expert_files[file_idx]))
if args.max_files != 1:
del buffer
buffer = torch.load(expert_files[file_idx])
if args.max_experts is not None:
buffer = buffer[:args.max_experts]
random.shuffle(buffer)
start_epoch = np.random.randint(0, args.max_start_epoch)
if not args.random_trajectory:
starting_params = expert_trajectory[start_epoch]
target_params = expert_trajectory[start_epoch+args.expert_epochs]
else:
starting_params = [p for p in student_net.parameters()]
target_params = [p for p in student_net.parameters()]
target_params = torch.cat([p.data.to(args.device).reshape(-1) for p in target_params], 0)
student_params = [torch.cat([p.data.to(args.device).reshape(-1) for p in starting_params], 0).requires_grad_(True)]
starting_params = torch.cat([p.data.to(args.device).reshape(-1) for p in starting_params], 0)
param_dist = torch.tensor(0.0).to(args.device)
param_dist += torch.nn.functional.mse_loss(starting_params, target_params, reduction="sum")
# produce soft labels for soft label assignment.
if args.teacher_label:
label_net = get_network(args.model, channel, num_classes, im_size, dist=False).to(args.device) # get a random model
label_net = ReparamModule(label_net)
label_net.eval()
# use the target param as the model param to get soft labels.
label_params = copy.deepcopy(target_params.detach()).requires_grad_(False)
batch_labels = []
SOFT_INIT_BATCH_SIZE = 50
if image_syn.shape[0] > SOFT_INIT_BATCH_SIZE and args.dataset == 'ImageNet':
for indices in torch.split(torch.tensor([i for i in range(0, image_syn.shape[0])], dtype=torch.long), SOFT_INIT_BATCH_SIZE):
batch_labels.append(label_net(image_syn[indices].detach().to(args.device), flat_param=label_params))
else:
label_syn = label_net(image_syn.detach().to(args.device), flat_param=label_params)
label_syn = torch.cat(batch_labels, dim=0)
label_syn = torch.nn.functional.softmax(label_syn)
del label_net, label_params
for _ in batch_labels:
del _
syn_images = image_syn
y_hat = label_syn.to(args.device)
syn_image_gradients = torch.zeros(syn_images.shape).to(args.device)
x_list = []
original_x_list = []
y_list = []
indices_chunks = []
gradient_sum = torch.zeros(student_params[-1].shape).to(args.device)
indices_chunks_copy = []
for _ in range(args.syn_steps):
if not indices_chunks:
indices = torch.randperm(len(syn_images))
indices_chunks = list(torch.split(indices, args.batch_syn))
these_indices = indices_chunks.pop()
indices_chunks_copy.append(these_indices)
x = syn_images[these_indices]
this_y = y_hat[these_indices]
original_x_list.append(x)
if args.dsa and (not args.no_aug):
x = DiffAugment(x, args.dsa_strategy, param=args.dsa_param)
x_list.append(x.clone())
y_list.append(this_y.clone())
forward_params = student_params[-1]
x = student_net(x, flat_param=forward_params)
ce_loss = criterion(x, this_y)
grad = torch.autograd.grad(ce_loss, forward_params, create_graph=True, retain_graph=True)[0]
detached_grad = grad.detach().clone()
student_params.append(student_params[-1] - syn_lr.item() * detached_grad)
gradient_sum += detached_grad
del grad
# --------Compute the gradients regarding input image and learning rate---------
# compute gradients invoving 2 gradients
for i in range(args.syn_steps):
# compute gradients for w_i
w_i = student_params[i]
output_i = student_net(x_list[i], flat_param = w_i)
if args.batch_syn:
ce_loss_i = criterion(output_i, y_list[i])
else:
ce_loss_i = criterion(output_i, y_hat)
grad_i = torch.autograd.grad(ce_loss_i, w_i, create_graph=True, retain_graph=True)[0]
single_term = syn_lr.item() * (target_params - starting_params)
square_term = (syn_lr.item() ** 2) * gradient_sum
gradients = 2 * torch.autograd.grad( (single_term + square_term) @ grad_i / param_dist, original_x_list[i])
with torch.no_grad():
syn_image_gradients[indices_chunks_copy[i]] += gradients[0]
# ---------end of computing input image gradients and learning rates--------------
syn_images.grad = syn_image_gradients
grand_loss = starting_params - syn_lr * gradient_sum - target_params
grand_loss = grand_loss.dot(grand_loss) / param_dist
lr_grad = torch.autograd.grad(grand_loss, syn_lr)[0]
syn_lr.grad = lr_grad
optimizer_img.step()
optimizer_lr.step()
wandb.log({"Grand_Loss": grand_loss.detach().cpu(),
"Start_Epoch": start_epoch})
for _ in student_params:
del _
if it%10 == 0:
print('%s iter = %04d, loss = %.4f' % (get_time(), it, grand_loss.item()))
wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parameter Processing')
parser.add_argument('--dataset', type=str, default='CIFAR10', help='dataset')
parser.add_argument('--model', type=str, default='ConvNet', help='model')
parser.add_argument('--ipc', type=int, default=1, help='image(s) per class')
parser.add_argument('--eval_mode', type=str, default='S',
help='eval_mode, check utils.py for more info')
parser.add_argument('--num_eval', type=int, default=3, help='how many networks to evaluate on')
parser.add_argument('--eval_it', type=int, default=100, help='how often to evaluate')
parser.add_argument('--epoch_eval_train', type=int, default=1000, help='epochs to train a model with synthetic data')
parser.add_argument('--Iteration', type=int, default=10000, help='how many distillation steps to perform')
parser.add_argument('--lr_img', type=float, default=1000, help='learning rate for updating synthetic images')
parser.add_argument('--lr_lr', type=float, default=1e-05, help='learning rate for updating... learning rate')
parser.add_argument('--lr_teacher', type=float, default=0.01, help='initialization for synthetic learning rate')
parser.add_argument('--lr_init', type=float, default=0.01, help='how to init lr (alpha)')
parser.add_argument('--batch_real', type=int, default=256, help='batch size for real data')
parser.add_argument('--batch_syn', type=int, default=None, help='should only use this if you run out of VRAM')
parser.add_argument('--batch_train', type=int, default=256, help='batch size for training networks')
parser.add_argument('--pix_init', type=str, default='real', choices=["noise", "real"],
help='noise/real: initialize synthetic images from random noise or randomly sampled real images.')
parser.add_argument('--dsa', type=str, default='True', choices=['True', 'False'],
help='whether to use differentiable Siamese augmentation.')
parser.add_argument('--dsa_strategy', type=str, default='color_crop_cutout_flip_scale_rotate',
help='differentiable Siamese augmentation strategy')
parser.add_argument('--data_path', type=str, default='/nfs/data/justincui/data/tiny-imagenet-200', help='dataset path')
parser.add_argument('--buffer_path', type=str, default='./buffers', help='buffer path')
parser.add_argument('--expert_epochs', type=int, default=3, help='how many expert epochs the target params are')
parser.add_argument('--syn_steps', type=int, default=20, help='how many steps to take on synthetic data')
parser.add_argument('--max_start_epoch', type=int, default=25, help='max epoch we can start at')
parser.add_argument('--zca', action='store_true', help="do ZCA whitening")
parser.add_argument('--random_trajectory', action='store_true', default=False, help="using random trajectory instead of pretrained")
parser.add_argument('--load_all', action='store_true', help="only use if you can fit all expert trajectories into RAM")
parser.add_argument('--no_aug', type=bool, default=False, help='this turns off diff aug during distillation')
parser.add_argument('--texture', action='store_true', help="will distill textures instead")
parser.add_argument('--canvas_size', type=int, default=2, help='size of synthetic canvas')
parser.add_argument('--canvas_samples', type=int, default=1, help='number of canvas samples per iteration')
parser.add_argument('--max_files', type=int, default=None, help='number of expert files to read (leave as None unless doing ablations)')
parser.add_argument('--max_experts', type=int, default=None, help='number of experts to read per file (leave as None unless doing ablations)')
parser.add_argument('--force_save', action='store_true', help='this will save images for 50ipc')
parser.add_argument('--teacher_label', action='store_true', default=False, help='whether to use label from the expert model to guide the distillation process.')
args = parser.parse_args()
main(args)