forked from fay067/CSC522_P08_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
35 lines (31 loc) · 1.27 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from tf_idf import *
from sklearn.metrics import silhouette_score, silhouette_samples
from sklearn.cluster import KMeans
from wordcloud import WordCloud, STOPWORDS
'''
Author : Wen-Han Hu
'''
# input matrix only searching best number of cluster. Input the expected cluster number to gain the clusters
def kmeans(matrix , uplimit = 15, cluster_num = None):
sse=[]
sscore={}
test_range = range(2,uplimit)
if cluster_num != None:
kmeans = KMeans(init='k-means++', n_clusters = cluster_num, n_init=30, random_state = 1)
kmeans.fit(matrix)
clusters = kmeans.predict(matrix)
return clusters
else:
for n_cluster in test_range:
kmeans = KMeans(n_clusters= n_cluster, init='k-means++',n_init=30, random_state = 1)
kmeans.fit(matrix)
clusters = kmeans.predict(matrix)
silhouette_avg = silhouette_score(matrix, clusters,random_state = 1)
sscore[n_cluster] = round(silhouette_avg,5)
sse.append(kmeans.inertia_)
return sse, sscore, test_range
if __name__ == "__main__":
df = tf_idf()
sse, sscore, test_range = kmeans(df.values)
for n_cluster, score in sscore.items():
print("Clusters = {}".format(n_cluster),",Silhouette Score = {}".format(score))