-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathgrid_processing.py
257 lines (233 loc) · 14.2 KB
/
grid_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import logging
import math
from typing import Any, Callable, Dict, List, Tuple
import numpy as np
from OpenGL.GL import glFinish
from models.grid import Grid
from opengl_helper.buffer import OverflowingBufferObject
from opengl_helper.compute_shader import ComputeShader
from opengl_helper.compute_shader_handler import ComputeShaderHandler
from opengl_helper.vertex_data_handler import OverflowingVertexDataHandler
from processing.advection_process import AdvectionProgress
from processing.edge_processing import EdgeProcessor
from processing.node_processing import NodeProcessor
from utility.performance import track_time
class GridProcessor:
def __init__(self, grid: Grid, node_processor: NodeProcessor, edge_processor: EdgeProcessor,
density_strength: float = 1000.0) -> None:
self.node_processor: NodeProcessor = node_processor
self.edge_processor: EdgeProcessor = edge_processor
self.grid: Grid = grid
self.grid_slice_size: int = grid.grid_cell_count[0] * \
grid.grid_cell_count[1]
shader_settings: Dict[str, str] = {
'grid_position': 'grid/grid_position.comp',
'clear_grid': 'grid/clear_grid.comp',
'node_density': 'grid/node_density_map.comp',
'sample_density': 'grid/sample_density_map.comp',
'node_advect': 'grid/node_advect.comp',
'sample_advect': 'grid/sample_advect.comp',
}
for shader_name, path in shader_settings.items():
ComputeShaderHandler().create(shader_name, path)
def split_function_generation(split_grid: Grid) -> Callable:
size_xy_slice = split_grid.grid_cell_count[0] * \
split_grid.grid_cell_count[1] * 4
def split_grid_data(data: np.array, i: int, size: int) -> np.array:
fitting_slices: float = math.floor(
size / (4 * size_xy_slice)) - 1
section_start: int = 0
section_end: int = 0
if i > 0:
section_start = int(i * fitting_slices * size_xy_slice)
if i < data.nbytes / (fitting_slices * size_xy_slice * 4) - 1:
# add one more slice at the edge for edge cases
section_end = int((i + 1) *
(fitting_slices + 1) * size_xy_slice)
return data[section_start:section_end]
return split_grid_data
self.grid_position_buffer: OverflowingBufferObject = OverflowingBufferObject(split_function_generation(grid),
object_size=4,
render_data_offset=[
0],
render_data_size=[4])
self.grid_density_buffer: OverflowingBufferObject = OverflowingBufferObject(split_function_generation(grid),
object_size=12,
render_data_offset=[
0],
render_data_size=[1])
self.position_ssbo_handler: OverflowingVertexDataHandler = OverflowingVertexDataHandler(
[], [(self.grid_position_buffer, 0)])
self.node_density_ssbo_handler: OverflowingVertexDataHandler = OverflowingVertexDataHandler(
[(self.node_processor.node_buffer, 0)], [(self.grid_density_buffer, 2)])
self.sample_density_ssbo_handler: List[List[OverflowingVertexDataHandler]] = [[OverflowingVertexDataHandler(
[(self.edge_processor.sample_buffer[i][j], 0),
(self.edge_processor.edge_buffer[i][j], 2)],
[(self.grid_density_buffer, 3)]) for j in range(len(self.edge_processor.sample_buffer[i]))] for i in range(
len(self.edge_processor.sample_buffer))]
self.node_advect_ssbo_handler: OverflowingVertexDataHandler = OverflowingVertexDataHandler(
[(self.node_processor.node_buffer, 0)], [(self.grid_density_buffer, 2)])
self.sample_advect_ssbo_handler: List[List[OverflowingVertexDataHandler]] = [[OverflowingVertexDataHandler(
[(self.edge_processor.sample_buffer[i][j], 0),
(self.edge_processor.edge_buffer[i][j], 2)],
[(self.grid_density_buffer, 3)]) for j in range(len(self.edge_processor.sample_buffer[i]))] for i in range(
len(self.edge_processor.sample_buffer))]
self.density_ssbo_handler: OverflowingVertexDataHandler = OverflowingVertexDataHandler(
[], [(self.grid_density_buffer, 0)])
self.density_strength: float = density_strength
self.grid_position_buffer.load_empty(np.float32, self.grid_slice_size * grid.grid_cell_count[2],
self.grid_slice_size)
self.grid_density_buffer.load_empty(np.int32, self.grid_slice_size * grid.grid_cell_count[2],
self.grid_slice_size)
self.position_buffer_slice_count: int = math.floor(
self.grid_position_buffer.size[0] / (self.grid_position_buffer.object_size * 4 * self.grid_slice_size)) - 1
self.density_buffer_slice_count: int = math.floor(
self.grid_density_buffer.size[0] / (self.grid_density_buffer.object_size * 4 * self.grid_slice_size)) - 1
def set_new_edge_processor(self, edge_processor: EdgeProcessor) -> None:
self.edge_processor = edge_processor
for layer_ssbo_handler in self.sample_density_ssbo_handler:
for container_ssbo_handler in layer_ssbo_handler:
container_ssbo_handler.delete()
self.sample_density_ssbo_handler = [[OverflowingVertexDataHandler(
[(self.edge_processor.sample_buffer[i][j], 0),
(self.edge_processor.edge_buffer[i][j], 2)],
[(self.grid_density_buffer, 3)]) for j in range(len(self.edge_processor.sample_buffer[i]))] for i in range(
len(self.edge_processor.sample_buffer))]
for layer_ssbo_handler in self.sample_advect_ssbo_handler:
for container_ssbo_handler in layer_ssbo_handler:
container_ssbo_handler.delete()
self.sample_advect_ssbo_handler = [[OverflowingVertexDataHandler(
[(self.edge_processor.sample_buffer[i][j], 0),
(self.edge_processor.edge_buffer[i][j], 2)],
[(self.grid_density_buffer, 3)]) for j in range(len(self.edge_processor.sample_buffer[i]))] for i in range(
len(self.edge_processor.sample_buffer))]
def set_uniform(self, compute_shader: ComputeShader, uniforms: List[str]) -> None:
uniform_data: List[Tuple[str, Any, Any]] = []
if 'slice_size' in uniforms:
uniform_data.append(('slice_size', self.grid_slice_size, 'int'))
if 'slice_count' in uniforms:
uniform_data.append(
('slice_count', self.position_buffer_slice_count, 'int'))
if 'grid_cell_size' in uniforms:
uniform_data.append(
('grid_cell_size', self.grid.grid_cell_size, 'vec3'))
if 'grid_bounding_min' in uniforms:
uniform_data.append(
('grid_bounding_min', self.grid.bounding_volume[0], 'vec3'))
if 'grid_bounding_max' in uniforms:
uniform_data.append(
('grid_bounding_max', self.grid.bounding_volume[1], 'vec3'))
if 'grid_cell_count' in uniforms:
uniform_data.append(
('grid_cell_count', self.grid.grid_cell_count, 'ivec3'))
if 'density_strength' in uniforms:
uniform_data.append(
('density_strength', self.density_strength, 'float'))
if 'max_sample_points' in uniforms:
uniform_data.append(
('max_sample_points', self.edge_processor.max_sample_points, 'int'))
if 'edge_importance_type' in uniforms:
uniform_data.append(
('edge_importance_type', self.edge_processor.edge_importance_type, 'int'))
compute_shader.set_uniform_data(uniform_data)
@track_time
def clear_buffer(self) -> None:
clear: ComputeShader = ComputeShaderHandler().get('clear_grid')
for i in range(len(self.grid_density_buffer.handle)):
self.density_ssbo_handler.set_buffer(i)
self.density_ssbo_handler.set()
clear.compute(self.grid_density_buffer.get_objects(i))
clear.barrier()
@track_time
def calculate_position(self) -> None:
logging.info('Calculate grid positions.')
position: ComputeShader = ComputeShaderHandler().get('grid_position')
self.set_uniform(position,
['slice_size', 'slice_count', 'grid_cell_size', 'grid_bounding_min', 'grid_cell_count'])
for i in range(len(self.grid_position_buffer.handle)):
self.position_ssbo_handler.set_buffer(i)
self.position_ssbo_handler.set()
position.set_uniform_data([('current_buffer', i, 'int')])
position.compute(self.grid_position_buffer.get_objects(i))
position.barrier()
@track_time
def calculate_node_density(self, advection_status: AdvectionProgress) -> None:
self.node_density_ssbo_handler.set_buffer(0)
self.node_density_ssbo_handler.set()
density: ComputeShader = ComputeShaderHandler().get('node_density')
self.set_uniform(density, [
'density_strength', 'grid_cell_size', 'grid_bounding_min', 'grid_cell_count'])
density.set_uniform_data(
[('bandwidth', advection_status.current_bandwidth, 'float')])
density.compute(len(self.node_processor.nodes))
density.barrier()
@track_time
def calculate_edge_density(self, layer: int, advection_status: AdvectionProgress, wait_for_compute: bool = False) -> None:
density: ComputeShader = ComputeShaderHandler().get('sample_density')
self.set_uniform(density, ['max_sample_points', 'slice_size', 'slice_count', 'density_strength',
'grid_cell_size', 'grid_bounding_min', 'grid_cell_count', 'edge_importance_type'])
density.set_uniform_data(
[('bandwidth', advection_status.current_bandwidth, 'float')])
for i in range(len(self.grid_density_buffer.handle)):
density.set_uniform_data([('current_buffer', i, 'int')])
for container in range(len(self.edge_processor.sample_buffer[layer])):
density.set_uniform_data(
[('grid_layer_offset', self.grid.layer_distance * layer, 'float')])
self.sample_density_ssbo_handler[layer][container].set_buffer(
i - 1)
self.sample_density_ssbo_handler[layer][container].set_range(3)
density.compute(
self.edge_processor.get_buffer_points(layer, container))
if wait_for_compute:
glFinish()
density.barrier()
@track_time
def node_advect(self, advection_status: AdvectionProgress) -> None:
self.node_advect_ssbo_handler.set_buffer(0)
self.node_advect_ssbo_handler.set()
advect: ComputeShader = ComputeShaderHandler().get('node_advect')
self.set_uniform(advect, [
'grid_cell_size', 'grid_bounding_min', 'grid_bounding_max', 'grid_cell_count'])
advect.set_uniform_data([
('advect_strength', advection_status.get_advection_strength(), 'float'),
('importance_similarity', advection_status.importance_similarity, 'float')
])
advect.compute(self.node_processor.get_buffer_points())
advect.barrier()
self.node_processor.node_buffer.swap()
@track_time
def sample_advect(self, layer: int, advection_status: AdvectionProgress, wait_for_compute: bool = False) -> None:
advect: ComputeShader = ComputeShaderHandler().get('sample_advect')
self.set_uniform(advect, ['max_sample_points', 'slice_size', 'slice_count', 'grid_cell_size',
'grid_bounding_min', 'grid_cell_count', 'edge_importance_type'])
advect.set_uniform_data([
('advect_strength', advection_status.get_advection_strength(), 'float'),
('importance_similarity', advection_status.importance_similarity, 'float')
])
for i in range(len(self.grid_density_buffer.handle)):
advect.set_uniform_data([('current_buffer', i, 'int')])
for container in range(len(self.edge_processor.sample_buffer[layer])):
advect.set_uniform_data(
[('grid_layer_offset', self.grid.layer_distance * layer, 'float')])
self.sample_advect_ssbo_handler[layer][container].set_buffer(i)
self.sample_advect_ssbo_handler[layer][container].set()
advect.compute(
self.edge_processor.get_buffer_points(layer, container))
self.edge_processor.sample_buffer[layer][container].swap()
if wait_for_compute:
glFinish()
advect.barrier()
def delete(self) -> None:
self.grid_position_buffer.delete()
self.grid_density_buffer.delete()
self.position_ssbo_handler.delete()
self.node_density_ssbo_handler.delete()
for layer_ssbo_handler in self.sample_density_ssbo_handler:
for container_ssbo_handler in layer_ssbo_handler:
container_ssbo_handler.delete()
self.sample_density_ssbo_handler = []
self.density_ssbo_handler.delete()
for layer_ssbo_handler in self.sample_advect_ssbo_handler:
for container_ssbo_handler in layer_ssbo_handler:
container_ssbo_handler.delete()
self.sample_advect_ssbo_handler = []