From 68c2320fb88ee61d73547668c9a7bbee5dfa76b5 Mon Sep 17 00:00:00 2001 From: vedantsahai18 Date: Thu, 14 Nov 2024 16:10:41 -0500 Subject: [PATCH 01/28] fix(agents-api): added anthropic call in chat endpoint + typespec changed to include imageurl in ChatInput --- agents-api/agents_api/autogen/Chat.py | 69 +++- agents-api/agents_api/autogen/Entries.py | 44 ++- agents-api/agents_api/autogen/Tasks.py | 46 ++- .../agents_api/routers/sessions/chat.py | 198 ++++++++-- .../integrations/autogen/Chat.py | 69 +++- .../integrations/autogen/Entries.py | 44 ++- .../integrations/autogen/Tasks.py | 46 ++- typespec/entries/models.tsp | 22 +- .../@typespec/openapi3/openapi-1.0.0.yaml | 344 ++++++++++++++++++ 9 files changed, 834 insertions(+), 48 deletions(-) diff --git a/agents-api/agents_api/autogen/Chat.py b/agents-api/agents_api/autogen/Chat.py index d013ae8b7..380476806 100644 --- a/agents-api/agents_api/autogen/Chat.py +++ b/agents-api/agents_api/autogen/Chat.py @@ -165,7 +165,58 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel1(Content): + pass + + +class ContentModel2(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel3(Content): + pass + + +class ContentModel4(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel5(Content): + pass + + +class ContentModel6(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel7(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -193,7 +244,8 @@ class Delta(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[ContentModel1 | ContentModel7 | ContentModel2] | None, + Field(...), ] = None """ The content parts of the message @@ -258,7 +310,8 @@ class Message(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[Content | ContentModel7 | ContentModel] | None, + Field(...), ] = None """ The content parts of the message @@ -305,7 +358,8 @@ class MessageModel(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[ContentModel3 | ContentModel7 | ContentModel4] | None, + Field(...), ] = None """ The content parts of the message @@ -405,6 +459,15 @@ class SingleChatOutput(BaseChatOutput): message: MessageModel +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str + + class TokenLogProb(BaseTokenLogProb): model_config = ConfigDict( populate_by_name=True, diff --git a/agents-api/agents_api/autogen/Entries.py b/agents-api/agents_api/autogen/Entries.py index f001fc880..829818e37 100644 --- a/agents-api/agents_api/autogen/Entries.py +++ b/agents-api/agents_api/autogen/Entries.py @@ -28,7 +28,7 @@ class BaseEntry(BaseModel): """ name: str | None = None content: ( - list[Content | ContentModel] + list[Content | ContentModel3 | ContentModel] | Tool | ChosenFunctionCall | ChosenComputer20241022 @@ -37,7 +37,7 @@ class BaseEntry(BaseModel): | str | ToolResponse | list[ - list[Content | ContentModel] + list[ContentModel1 | ContentModel3 | ContentModel2] | Tool | ChosenFunctionCall | ChosenComputer20241022 @@ -95,7 +95,38 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel1(Content): + pass + + +class ContentModel2(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel3(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -168,3 +199,12 @@ class Relation(BaseModel): head: UUID relation: str tail: UUID + + +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str diff --git a/agents-api/agents_api/autogen/Tasks.py b/agents-api/agents_api/autogen/Tasks.py index e62e6d3c3..2fad6d63d 100644 --- a/agents-api/agents_api/autogen/Tasks.py +++ b/agents-api/agents_api/autogen/Tasks.py @@ -85,6 +85,14 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): model_config = ConfigDict( populate_by_name=True, @@ -99,14 +107,33 @@ class ContentModel(BaseModel): """ -class ContentModel1(Content): +class ContentModel1(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel2(Content): pass -class ContentModel2(ContentModel): +class ContentModel3(ContentModel): pass +class ContentModel4(ContentModel1): + """ + Anthropic image content part + """ + + class CreateTaskRequest(BaseModel): """ Payload for creating a task @@ -655,7 +682,8 @@ class PromptItem(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - list[str] | list[Content | ContentModel] | str | None, Field(...) + list[str] | list[Content | ContentModel | ContentModel1] | str | None, + Field(...), ] """ The content parts of the message @@ -861,6 +889,18 @@ class SleepStep(BaseModel): """ +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str + """ + A valid jinja template. + """ + + class SwitchStep(BaseModel): model_config = ConfigDict( populate_by_name=True, diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 17a93799d..5ef4bde56 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -1,9 +1,17 @@ -from typing import Annotated, Optional +from datetime import datetime +from typing import Annotated, Callable, Optional from uuid import UUID, uuid4 +from anthropic import AsyncAnthropic +from anthropic.types.beta.beta_message import BetaMessage from fastapi import BackgroundTasks, Depends, Header +from langchain_core.tools import BaseTool +from langchain_core.tools.convert import tool as tool_decorator +from litellm import ChatCompletionMessageToolCall, Function, Message +from litellm.types.utils import Choices, ModelResponse from starlette.status import HTTP_201_CREATED +from ...activities.utils import get_handler_with_filtered_params from ...autogen.openapi_model import ( ChatInput, ChatResponse, @@ -11,18 +19,78 @@ CreateEntryRequest, MessageChatResponse, ) +from ...autogen.Tools import Tool from ...clients import litellm from ...common.protocol.developers import Developer from ...common.protocol.sessions import ChatContext from ...common.utils.datetime import utcnow from ...common.utils.template import render_template from ...dependencies.developer_id import get_developer_data +from ...env import anthropic_api_key from ...models.chat.gather_messages import gather_messages from ...models.chat.prepare_chat_context import prepare_chat_context from ...models.entry.create_entries import create_entries from .metrics import total_tokens_per_user from .router import router +COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" + + +def format_tool(tool: Tool) -> dict: + if tool.type == "computer_20241022": + return { + "type": tool.type, + "name": tool.name, + "display_width_px": tool.computer_20241022 + and tool.computer_20241022.display_width_px, + "display_height_px": tool.computer_20241022 + and tool.computer_20241022.display_height_px, + "display_number": tool.computer_20241022 + and tool.computer_20241022.display_number, + } + + if tool.type in ["bash_20241022", "text_editor_20241022"]: + return tool.model_dump(include={"type", "name"}) + + if tool.type == "function": + return { + "type": "function", + "function": { + "name": tool.name, + "description": tool.description, + "parameters": tool.function and tool.function.parameters, + }, + } + + # For other tool types, we need to translate them to the OpenAI function tool format + formatted = { + "type": "function", + "function": {"name": tool.name, "description": tool.description}, + } + + if tool.type == "system": + handler: Callable = get_handler_with_filtered_params(tool.system) + + lc_tool: BaseTool = tool_decorator(handler) + + json_schema: dict = lc_tool.get_input_jsonschema() + + formatted["function"]["description"] = formatted["function"][ + "description" + ] or json_schema.get("description") + + formatted["function"]["parameters"] = json_schema + + # # FIXME: Implement integration tools + # elif tool.type == "integration": + # raise NotImplementedError("Integration tools are not supported") + + # # FIXME: Implement API call tools + # elif tool.type == "api_call": + # raise NotImplementedError("API call tools are not supported") + + return formatted + @router.post( "/sessions/{session_id}/chat", @@ -106,27 +174,9 @@ async def chat( # Get the tools tools = settings.get("tools") or chat_context.get_active_tools() - tools = [tool.model_dump(mode="json") for tool in tools] - - # Convert anthropic tools to `function` - for tool in tools: - if tool.get("type") == "computer_20241022": - tool["function"] = { - "name": tool["name"], - "parameters": tool.pop("computer_20241022"), - } - - elif tool.get("type") == "bash_20241022": - tool["function"] = { - "name": tool["name"], - "parameters": tool.pop("bash_20241022"), - } - - elif tool.get("type") == "text_editor_20241022": - tool["function"] = { - "name": tool["name"], - "parameters": tool.pop("text_editor_20241022"), - } + + # Format tools for litellm + formatted_tools = [format_tool(tool) for tool in tools] # FIXME: Truncate chat messages in the chat context # SCRUM-7 @@ -144,16 +194,104 @@ async def chat( for m in messages ] - # Get the response from the model - model_response = await litellm.acompletion( - messages=messages, - tools=tools or None, - user=str(developer.id), # For tracking usage - tags=developer.tags, # For filtering models in litellm - custom_api_key=x_custom_api_key, - **settings, + # Check if using Claude model and has specific tool types + is_claude_model = settings["model"].lower().startswith("claude-3.5") + has_special_tools = any( + tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] + for tool in formatted_tools ) + if is_claude_model and has_special_tools: + # Use Anthropic API directly + client = AsyncAnthropic(api_key=anthropic_api_key) + + # Filter tools for specific types + filtered_tools = [ + tool + for tool in formatted_tools + if tool["type"] + in ["computer_20241022", "bash_20241022", "text_editor_20241022"] + ] + + # Format messages for Claude + claude_messages = [] + for msg in messages: + # Skip messages that are not assistant or user + if msg["role"] not in ["assistant", "user"]: + continue + + claude_messages.append({"role": msg["role"], "content": msg["content"]}) + + # Call Claude API + claude_response: BetaMessage = await client.beta.messages.create( + model="claude-3-5-sonnet-20241022", + messages=claude_messages, + tools=filtered_tools, + max_tokens=settings.get("max_tokens", 1024), + betas=[COMPUTER_USE_BETA_FLAG], + ) + + # Convert Claude response to litellm format + text_block = next( + (block for block in claude_response.content if block.type == "text"), + None, + ) + + if claude_response.stop_reason == "tool_use": + choice = Choices( + message=Message( + role="assistant", + content=text_block.text if text_block else None, + tool_calls=[ + ChatCompletionMessageToolCall( + type="function", + function=Function( + name=block.name, + arguments=block.input, + ), + ) + for block in claude_response.content + if block.type == "tool_use" + ], + ), + finish_reason="tool_calls", + ) + else: + assert ( + text_block + ), "Claude should always return a text block for stop_reason=stop" + choice = Choices( + message=Message( + role="assistant", + content=text_block.text, + ), + finish_reason="stop", + ) + + model_response = ModelResponse( + id=claude_response.id, + choices=[choice], + created=int(datetime.now().timestamp()), + model=claude_response.model, + object="text_completion", + usage={ + "total_tokens": claude_response.usage.input_tokens + + claude_response.usage.output_tokens + }, + ) + else: + # FIXME: hardcoded tool to a None value as the tool calls are not implemented yet + formatted_tools = None + # Use litellm for other models + model_response = await litellm.acompletion( + messages=messages, + tools=formatted_tools or None, + user=str(developer.id), + tags=developer.tags, + custom_api_key=x_custom_api_key, + **settings, + ) + # Save the input and the response to the session history if chat_input.save: new_entries = [ diff --git a/integrations-service/integrations/autogen/Chat.py b/integrations-service/integrations/autogen/Chat.py index d013ae8b7..380476806 100644 --- a/integrations-service/integrations/autogen/Chat.py +++ b/integrations-service/integrations/autogen/Chat.py @@ -165,7 +165,58 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel1(Content): + pass + + +class ContentModel2(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel3(Content): + pass + + +class ContentModel4(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel5(Content): + pass + + +class ContentModel6(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel7(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -193,7 +244,8 @@ class Delta(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[ContentModel1 | ContentModel7 | ContentModel2] | None, + Field(...), ] = None """ The content parts of the message @@ -258,7 +310,8 @@ class Message(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[Content | ContentModel7 | ContentModel] | None, + Field(...), ] = None """ The content parts of the message @@ -305,7 +358,8 @@ class MessageModel(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - str | list[str] | list[Content | ContentModel] | None, Field(...) + str | list[str] | list[ContentModel3 | ContentModel7 | ContentModel4] | None, + Field(...), ] = None """ The content parts of the message @@ -405,6 +459,15 @@ class SingleChatOutput(BaseChatOutput): message: MessageModel +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str + + class TokenLogProb(BaseTokenLogProb): model_config = ConfigDict( populate_by_name=True, diff --git a/integrations-service/integrations/autogen/Entries.py b/integrations-service/integrations/autogen/Entries.py index f001fc880..829818e37 100644 --- a/integrations-service/integrations/autogen/Entries.py +++ b/integrations-service/integrations/autogen/Entries.py @@ -28,7 +28,7 @@ class BaseEntry(BaseModel): """ name: str | None = None content: ( - list[Content | ContentModel] + list[Content | ContentModel3 | ContentModel] | Tool | ChosenFunctionCall | ChosenComputer20241022 @@ -37,7 +37,7 @@ class BaseEntry(BaseModel): | str | ToolResponse | list[ - list[Content | ContentModel] + list[ContentModel1 | ContentModel3 | ContentModel2] | Tool | ChosenFunctionCall | ChosenComputer20241022 @@ -95,7 +95,38 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel1(Content): + pass + + +class ContentModel2(ContentModel): + """ + Anthropic image content part + """ + + +class ContentModel3(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -168,3 +199,12 @@ class Relation(BaseModel): head: UUID relation: str tail: UUID + + +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str diff --git a/integrations-service/integrations/autogen/Tasks.py b/integrations-service/integrations/autogen/Tasks.py index e62e6d3c3..2fad6d63d 100644 --- a/integrations-service/integrations/autogen/Tasks.py +++ b/integrations-service/integrations/autogen/Tasks.py @@ -85,6 +85,14 @@ class Content(BaseModel): """ +class ContentItem(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["image"] = "image" + source: Source + + class ContentModel(BaseModel): model_config = ConfigDict( populate_by_name=True, @@ -99,14 +107,33 @@ class ContentModel(BaseModel): """ -class ContentModel1(Content): +class ContentModel1(BaseModel): + """ + Anthropic image content part + """ + + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItem] + + +class ContentModel2(Content): pass -class ContentModel2(ContentModel): +class ContentModel3(ContentModel): pass +class ContentModel4(ContentModel1): + """ + Anthropic image content part + """ + + class CreateTaskRequest(BaseModel): """ Payload for creating a task @@ -655,7 +682,8 @@ class PromptItem(BaseModel): """ tool_call_id: str | None = None content: Annotated[ - list[str] | list[Content | ContentModel] | str | None, Field(...) + list[str] | list[Content | ContentModel | ContentModel1] | str | None, + Field(...), ] """ The content parts of the message @@ -861,6 +889,18 @@ class SleepStep(BaseModel): """ +class Source(BaseModel): + model_config = ConfigDict( + populate_by_name=True, + ) + type: Literal["base64"] = "base64" + media_type: str + data: str + """ + A valid jinja template. + """ + + class SwitchStep(BaseModel): model_config = ConfigDict( populate_by_name=True, diff --git a/typespec/entries/models.tsp b/typespec/entries/models.tsp index 61f47bce2..95fbadb55 100644 --- a/typespec/entries/models.tsp +++ b/typespec/entries/models.tsp @@ -50,7 +50,25 @@ model ChatMLImageContentPart { type: "image_url" = "image_url"; } -alias ChatMLContentPart = ChatMLTextContentPart | ChatMLImageContentPart; +model ChatMLAnthropicImageSource { + type: "base64" = "base64"; + media_type: string; + data: T; +} + +model ChatMLAnthropicInnerImageContentPart { + type: "image" = "image"; + source: ChatMLAnthropicImageSource; +} + +/** Anthropic image content part */ +model ChatMLAnthropicImageContentPart { + tool_use_id: string; + type: "tool_result" = "tool_result"; + content: ChatMLAnthropicInnerImageContentPart[]; +} + +alias ChatMLContentPart = ChatMLTextContentPart | ChatMLImageContentPart | ChatMLAnthropicImageContentPart; model ChatMLMessage { /** The role of the message */ @@ -119,4 +137,4 @@ model History { session_id: Session.id; ...HasCreatedAt; -} +} \ No newline at end of file diff --git a/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml b/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml index d83ce87f5..93b74354b 100644 --- a/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml +++ b/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml @@ -1836,6 +1836,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part nullable: true description: The content parts of the message name: @@ -1936,6 +1979,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part nullable: true description: The content parts of the message name: @@ -2167,6 +2253,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part nullable: true description: The content parts of the message name: @@ -2317,6 +2446,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part nullable: true description: The content parts of the message name: @@ -2809,6 +2981,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part - $ref: '#/components/schemas/Tools.Tool' - $ref: '#/components/schemas/Tools.ChosenFunctionCall' - $ref: '#/components/schemas/Tools.ChosenComputer20241022' @@ -2861,6 +3076,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string + description: Anthropic image content part - $ref: '#/components/schemas/Tools.Tool' - $ref: '#/components/schemas/Tools.ChosenFunctionCall' - $ref: '#/components/schemas/Tools.ChosenComputer20241022' @@ -4784,6 +5042,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + $ref: '#/components/schemas/Common.JinjaTemplate' + description: Anthropic image content part nullable: true description: The content parts of the message name: @@ -4934,6 +5235,49 @@ components: - image_url description: The type (fixed to 'image_url') default: image_url + - type: object + required: + - tool_use_id + - type + - content + properties: + tool_use_id: + type: string + type: + type: string + enum: + - tool_result + default: tool_result + content: + type: array + items: + type: object + required: + - type + - source + properties: + type: + type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + $ref: '#/components/schemas/Common.JinjaTemplate' + description: Anthropic image content part nullable: true description: The content parts of the message name: From a437681213e309ea8389464929ec0522088c7f3c Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Fri, 15 Nov 2024 19:14:30 +0300 Subject: [PATCH 02/28] fix: change format of past messages for anthropic + add key mappings to remote_browser --- agents-api/agents_api/autogen/Chat.py | 59 ++- agents-api/agents_api/autogen/Entries.py | 25 +- agents-api/agents_api/autogen/Tasks.py | 26 +- .../agents_api/routers/sessions/chat.py | 184 ++++--- .../integrations/autogen/Chat.py | 59 ++- .../integrations/autogen/Entries.py | 25 +- .../integrations/autogen/Tasks.py | 26 +- .../utils/integrations/remote_browser.py | 10 + typespec/entries/models.tsp | 2 +- .../@typespec/openapi3/openapi-1.0.0.yaml | 448 +++++++++++------- 10 files changed, 604 insertions(+), 260 deletions(-) diff --git a/agents-api/agents_api/autogen/Chat.py b/agents-api/agents_api/autogen/Chat.py index 380476806..042f9164d 100644 --- a/agents-api/agents_api/autogen/Chat.py +++ b/agents-api/agents_api/autogen/Chat.py @@ -165,7 +165,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -173,6 +177,30 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + +class ContentItemModel3(Content): + pass + + +class ContentItemModel4(ContentItemModel): + pass + + +class ContentItemModel5(Content): + pass + + +class ContentItemModel6(ContentItemModel): + pass + + class ContentModel(BaseModel): """ Anthropic image content part @@ -183,38 +211,59 @@ class ContentModel(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel1(Content): pass -class ContentModel2(ContentModel): +class ContentModel2(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class ContentModel3(Content): pass -class ContentModel4(ContentModel): +class ContentModel4(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel3] | list[ContentItemModel4] + class ContentModel5(Content): pass -class ContentModel6(ContentModel): +class ContentModel6(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel5] | list[ContentItemModel6] + class ContentModel7(BaseModel): model_config = ConfigDict( diff --git a/agents-api/agents_api/autogen/Entries.py b/agents-api/agents_api/autogen/Entries.py index 829818e37..de37e77d8 100644 --- a/agents-api/agents_api/autogen/Entries.py +++ b/agents-api/agents_api/autogen/Entries.py @@ -95,7 +95,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -103,6 +107,14 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + class ContentModel(BaseModel): """ Anthropic image content part @@ -113,18 +125,25 @@ class ContentModel(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel1(Content): pass -class ContentModel2(ContentModel): +class ContentModel2(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class ContentModel3(BaseModel): model_config = ConfigDict( diff --git a/agents-api/agents_api/autogen/Tasks.py b/agents-api/agents_api/autogen/Tasks.py index 2fad6d63d..8e98caaab 100644 --- a/agents-api/agents_api/autogen/Tasks.py +++ b/agents-api/agents_api/autogen/Tasks.py @@ -9,6 +9,7 @@ from pydantic import AwareDatetime, BaseModel, ConfigDict, Field, StrictBool from .Chat import ChatSettings +from .Common import JinjaTemplate from .Tools import ( ChosenBash20241022, ChosenComputer20241022, @@ -85,7 +86,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -93,6 +98,14 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + class ContentModel(BaseModel): model_config = ConfigDict( populate_by_name=True, @@ -117,7 +130,7 @@ class ContentModel1(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel2(Content): @@ -128,11 +141,18 @@ class ContentModel3(ContentModel): pass -class ContentModel4(ContentModel1): +class ContentModel4(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class CreateTaskRequest(BaseModel): """ diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 5ef4bde56..57ba970e1 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -1,3 +1,4 @@ +import json from datetime import datetime from typing import Annotated, Callable, Optional from uuid import UUID, uuid4 @@ -36,6 +37,111 @@ COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" +async def request_anthropic( + messages: list[dict], formatted_tools: list[dict], settings: dict +) -> ModelResponse: + # Use Anthropic API directly + client = AsyncAnthropic(api_key=anthropic_api_key) + + # Filter tools for specific types + filtered_tools = [ + tool + for tool in formatted_tools + if tool["type"] + in ["computer_20241022", "bash_20241022", "text_editor_20241022"] + ] + + # Format messages for Claude + claude_messages = [] + for msg in messages: + # Skip messages that are not assistant or user + if msg["role"] not in ["assistant", "user"]: + continue + + # Transform the message content and tool calls + if msg["role"] == "assistant": + transformed_content = [{"text": msg["content"], "type": "text"}] + transformed_content.extend( + { + "id": f"{tool_call['id']}", + "input": json.loads(tool_call["function"]["arguments"]), + "name": tool_call["function"]["name"], + "type": "tool_use", + } + for tool_call in msg.get("tool_calls", []) + ) + claude_message = { + "role": msg["role"], + "content": transformed_content, + } + else: + try: + transformed_content = json.loads(msg["content"]) + except Exception: + transformed_content = msg["content"] + claude_message = {"role": msg["role"], "content": transformed_content} + + claude_messages.append(claude_message) + # Call Claude API + claude_response: BetaMessage = await client.beta.messages.create( + model="claude-3-5-sonnet-20241022", + messages=claude_messages, + tools=filtered_tools, + max_tokens=settings.get("max_tokens", 1024), + betas=[COMPUTER_USE_BETA_FLAG], + ) + # Convert Claude response to litellm format + text_block = next( + (block for block in claude_response.content if block.type == "text"), + None, + ) + + if claude_response.stop_reason == "tool_use": + choice = Choices( + message=Message( + role="assistant", + content=text_block.text if text_block else None, + tool_calls=[ + ChatCompletionMessageToolCall( + type="function", + function=Function( + name=block.name, + arguments=block.input, + ), + ) + for block in claude_response.content + if block.type == "tool_use" + ], + ), + finish_reason="tool_calls", + ) + else: + assert ( + text_block + ), "Claude should always return a text block for stop_reason=stop" + choice = Choices( + message=Message( + role="assistant", + content=text_block.text, + ), + finish_reason="stop", + ) + + model_response = ModelResponse( + id=claude_response.id, + choices=[choice], + created=int(datetime.now().timestamp()), + model=claude_response.model, + object="text_completion", + usage={ + "total_tokens": claude_response.usage.input_tokens + + claude_response.usage.output_tokens + }, + ) + + return model_response + + def format_tool(tool: Tool) -> dict: if tool.type == "computer_20241022": return { @@ -202,83 +308,7 @@ async def chat( ) if is_claude_model and has_special_tools: - # Use Anthropic API directly - client = AsyncAnthropic(api_key=anthropic_api_key) - - # Filter tools for specific types - filtered_tools = [ - tool - for tool in formatted_tools - if tool["type"] - in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - ] - - # Format messages for Claude - claude_messages = [] - for msg in messages: - # Skip messages that are not assistant or user - if msg["role"] not in ["assistant", "user"]: - continue - - claude_messages.append({"role": msg["role"], "content": msg["content"]}) - - # Call Claude API - claude_response: BetaMessage = await client.beta.messages.create( - model="claude-3-5-sonnet-20241022", - messages=claude_messages, - tools=filtered_tools, - max_tokens=settings.get("max_tokens", 1024), - betas=[COMPUTER_USE_BETA_FLAG], - ) - - # Convert Claude response to litellm format - text_block = next( - (block for block in claude_response.content if block.type == "text"), - None, - ) - - if claude_response.stop_reason == "tool_use": - choice = Choices( - message=Message( - role="assistant", - content=text_block.text if text_block else None, - tool_calls=[ - ChatCompletionMessageToolCall( - type="function", - function=Function( - name=block.name, - arguments=block.input, - ), - ) - for block in claude_response.content - if block.type == "tool_use" - ], - ), - finish_reason="tool_calls", - ) - else: - assert ( - text_block - ), "Claude should always return a text block for stop_reason=stop" - choice = Choices( - message=Message( - role="assistant", - content=text_block.text, - ), - finish_reason="stop", - ) - - model_response = ModelResponse( - id=claude_response.id, - choices=[choice], - created=int(datetime.now().timestamp()), - model=claude_response.model, - object="text_completion", - usage={ - "total_tokens": claude_response.usage.input_tokens - + claude_response.usage.output_tokens - }, - ) + model_response = await request_anthropic(messages, formatted_tools, settings) else: # FIXME: hardcoded tool to a None value as the tool calls are not implemented yet formatted_tools = None diff --git a/integrations-service/integrations/autogen/Chat.py b/integrations-service/integrations/autogen/Chat.py index 380476806..042f9164d 100644 --- a/integrations-service/integrations/autogen/Chat.py +++ b/integrations-service/integrations/autogen/Chat.py @@ -165,7 +165,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -173,6 +177,30 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + +class ContentItemModel3(Content): + pass + + +class ContentItemModel4(ContentItemModel): + pass + + +class ContentItemModel5(Content): + pass + + +class ContentItemModel6(ContentItemModel): + pass + + class ContentModel(BaseModel): """ Anthropic image content part @@ -183,38 +211,59 @@ class ContentModel(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel1(Content): pass -class ContentModel2(ContentModel): +class ContentModel2(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class ContentModel3(Content): pass -class ContentModel4(ContentModel): +class ContentModel4(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel3] | list[ContentItemModel4] + class ContentModel5(Content): pass -class ContentModel6(ContentModel): +class ContentModel6(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel5] | list[ContentItemModel6] + class ContentModel7(BaseModel): model_config = ConfigDict( diff --git a/integrations-service/integrations/autogen/Entries.py b/integrations-service/integrations/autogen/Entries.py index 829818e37..de37e77d8 100644 --- a/integrations-service/integrations/autogen/Entries.py +++ b/integrations-service/integrations/autogen/Entries.py @@ -95,7 +95,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -103,6 +107,14 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + class ContentModel(BaseModel): """ Anthropic image content part @@ -113,18 +125,25 @@ class ContentModel(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel1(Content): pass -class ContentModel2(ContentModel): +class ContentModel2(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class ContentModel3(BaseModel): model_config = ConfigDict( diff --git a/integrations-service/integrations/autogen/Tasks.py b/integrations-service/integrations/autogen/Tasks.py index 2fad6d63d..8e98caaab 100644 --- a/integrations-service/integrations/autogen/Tasks.py +++ b/integrations-service/integrations/autogen/Tasks.py @@ -9,6 +9,7 @@ from pydantic import AwareDatetime, BaseModel, ConfigDict, Field, StrictBool from .Chat import ChatSettings +from .Common import JinjaTemplate from .Tools import ( ChosenBash20241022, ChosenComputer20241022, @@ -85,7 +86,11 @@ class Content(BaseModel): """ -class ContentItem(BaseModel): +class ContentItem(Content): + pass + + +class ContentItemModel(BaseModel): model_config = ConfigDict( populate_by_name=True, ) @@ -93,6 +98,14 @@ class ContentItem(BaseModel): source: Source +class ContentItemModel1(Content): + pass + + +class ContentItemModel2(ContentItemModel): + pass + + class ContentModel(BaseModel): model_config = ConfigDict( populate_by_name=True, @@ -117,7 +130,7 @@ class ContentModel1(BaseModel): ) tool_use_id: str type: Literal["tool_result"] = "tool_result" - content: list[ContentItem] + content: list[ContentItem] | list[ContentItemModel] class ContentModel2(Content): @@ -128,11 +141,18 @@ class ContentModel3(ContentModel): pass -class ContentModel4(ContentModel1): +class ContentModel4(BaseModel): """ Anthropic image content part """ + model_config = ConfigDict( + populate_by_name=True, + ) + tool_use_id: str + type: Literal["tool_result"] = "tool_result" + content: list[ContentItemModel1] | list[ContentItemModel2] + class CreateTaskRequest(BaseModel): """ diff --git a/integrations-service/integrations/utils/integrations/remote_browser.py b/integrations-service/integrations/utils/integrations/remote_browser.py index 11e3e24a3..6e5d63375 100644 --- a/integrations-service/integrations/utils/integrations/remote_browser.py +++ b/integrations-service/integrations/utils/integrations/remote_browser.py @@ -231,6 +231,16 @@ async def press_key(self, key_combination: str) -> RemoteBrowserOutput: """Press a key or key combination""" # Split combination into individual keys keys = key_combination.split("+") + keys = [ + "Enter" + if k == "Return" + else "Control" + if k == "ctrl" + else "PageDown" + if k == "Page_Down" + else k + for k in keys + ] # Press modifier keys first for key in keys[:-1]: diff --git a/typespec/entries/models.tsp b/typespec/entries/models.tsp index 95fbadb55..9821efa9b 100644 --- a/typespec/entries/models.tsp +++ b/typespec/entries/models.tsp @@ -65,7 +65,7 @@ model ChatMLAnthropicInnerImageContentPart { model ChatMLAnthropicImageContentPart { tool_use_id: string; type: "tool_result" = "tool_result"; - content: ChatMLAnthropicInnerImageContentPart[]; + content: ChatMLTextContentPart[] | ChatMLAnthropicInnerImageContentPart[]; } alias ChatMLContentPart = ChatMLTextContentPart | ChatMLImageContentPart | ChatMLAnthropicImageContentPart; diff --git a/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml b/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml index 93b74354b..4952c905b 100644 --- a/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml +++ b/typespec/tsp-output/@typespec/openapi3/openapi-1.0.0.yaml @@ -1850,34 +1850,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part nullable: true description: The content parts of the message @@ -1993,34 +2009,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part nullable: true description: The content parts of the message @@ -2267,34 +2299,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part nullable: true description: The content parts of the message @@ -2460,34 +2508,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part nullable: true description: The content parts of the message @@ -2995,34 +3059,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part - $ref: '#/components/schemas/Tools.Tool' - $ref: '#/components/schemas/Tools.ChosenFunctionCall' @@ -3090,34 +3170,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + type: string type: type: string enum: - - base64 - default: base64 - media_type: - type: string - data: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + type: string description: Anthropic image content part - $ref: '#/components/schemas/Tools.Tool' - $ref: '#/components/schemas/Tools.ChosenFunctionCall' @@ -5056,34 +5152,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + $ref: '#/components/schemas/Common.JinjaTemplate' type: type: string enum: - - base64 - default: base64 - media_type: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string - data: - $ref: '#/components/schemas/Common.JinjaTemplate' + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + $ref: '#/components/schemas/Common.JinjaTemplate' description: Anthropic image content part nullable: true description: The content parts of the message @@ -5249,34 +5361,50 @@ components: - tool_result default: tool_result content: - type: array - items: - type: object - required: - - type - - source - properties: - type: - type: string - enum: - - image - default: image - source: + anyOf: + - type: array + items: type: object required: + - text - type - - media_type - - data properties: + text: + $ref: '#/components/schemas/Common.JinjaTemplate' type: type: string enum: - - base64 - default: base64 - media_type: + - text + description: The type (fixed to 'text') + default: text + - type: array + items: + type: object + required: + - type + - source + properties: + type: type: string - data: - $ref: '#/components/schemas/Common.JinjaTemplate' + enum: + - image + default: image + source: + type: object + required: + - type + - media_type + - data + properties: + type: + type: string + enum: + - base64 + default: base64 + media_type: + type: string + data: + $ref: '#/components/schemas/Common.JinjaTemplate' description: Anthropic image content part nullable: true description: The content parts of the message From cb482373e3504a810c1fc2ca42d06672eeea87c5 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Fri, 15 Nov 2024 23:14:23 +0300 Subject: [PATCH 03/28] fix: fix empty assistant text bug --- agents-api/agents_api/routers/sessions/chat.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 57ba970e1..4ec15a93f 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -60,7 +60,7 @@ async def request_anthropic( # Transform the message content and tool calls if msg["role"] == "assistant": - transformed_content = [{"text": msg["content"], "type": "text"}] + transformed_content = [{"text": "Let's do this action" if msg["content"] == [] else msg["content"], "type": "text"}] transformed_content.extend( { "id": f"{tool_call['id']}", From 1bdc8755cfd95781d281a5a29d2651b10dfee168 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Fri, 15 Nov 2024 20:15:03 +0000 Subject: [PATCH 04/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/routers/sessions/chat.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 4ec15a93f..36f96014d 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -60,7 +60,14 @@ async def request_anthropic( # Transform the message content and tool calls if msg["role"] == "assistant": - transformed_content = [{"text": "Let's do this action" if msg["content"] == [] else msg["content"], "type": "text"}] + transformed_content = [ + { + "text": "Let's do this action" + if msg["content"] == [] + else msg["content"], + "type": "text", + } + ] transformed_content.extend( { "id": f"{tool_call['id']}", From 615bd2795c61f641dd21012a7f18940666c86001 Mon Sep 17 00:00:00 2001 From: vedantsahai18 Date: Sat, 16 Nov 2024 00:25:46 -0500 Subject: [PATCH 05/28] updated format tool call --- .../agents_api/routers/sessions/chat.py | 61 +------------------ 1 file changed, 1 insertion(+), 60 deletions(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 36f96014d..7033a4885 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -6,13 +6,10 @@ from anthropic import AsyncAnthropic from anthropic.types.beta.beta_message import BetaMessage from fastapi import BackgroundTasks, Depends, Header -from langchain_core.tools import BaseTool -from langchain_core.tools.convert import tool as tool_decorator from litellm import ChatCompletionMessageToolCall, Function, Message from litellm.types.utils import Choices, ModelResponse from starlette.status import HTTP_201_CREATED -from ...activities.utils import get_handler_with_filtered_params from ...autogen.openapi_model import ( ChatInput, ChatResponse, @@ -33,6 +30,7 @@ from ...models.entry.create_entries import create_entries from .metrics import total_tokens_per_user from .router import router +from ...activities.task_steps.prompt_step import format_tool COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" @@ -148,63 +146,6 @@ async def request_anthropic( return model_response - -def format_tool(tool: Tool) -> dict: - if tool.type == "computer_20241022": - return { - "type": tool.type, - "name": tool.name, - "display_width_px": tool.computer_20241022 - and tool.computer_20241022.display_width_px, - "display_height_px": tool.computer_20241022 - and tool.computer_20241022.display_height_px, - "display_number": tool.computer_20241022 - and tool.computer_20241022.display_number, - } - - if tool.type in ["bash_20241022", "text_editor_20241022"]: - return tool.model_dump(include={"type", "name"}) - - if tool.type == "function": - return { - "type": "function", - "function": { - "name": tool.name, - "description": tool.description, - "parameters": tool.function and tool.function.parameters, - }, - } - - # For other tool types, we need to translate them to the OpenAI function tool format - formatted = { - "type": "function", - "function": {"name": tool.name, "description": tool.description}, - } - - if tool.type == "system": - handler: Callable = get_handler_with_filtered_params(tool.system) - - lc_tool: BaseTool = tool_decorator(handler) - - json_schema: dict = lc_tool.get_input_jsonschema() - - formatted["function"]["description"] = formatted["function"][ - "description" - ] or json_schema.get("description") - - formatted["function"]["parameters"] = json_schema - - # # FIXME: Implement integration tools - # elif tool.type == "integration": - # raise NotImplementedError("Integration tools are not supported") - - # # FIXME: Implement API call tools - # elif tool.type == "api_call": - # raise NotImplementedError("API call tools are not supported") - - return formatted - - @router.post( "/sessions/{session_id}/chat", status_code=HTTP_201_CREATED, From c7e0c60d1d3b38dc080c0b9a869a75a270f33899 Mon Sep 17 00:00:00 2001 From: Vedantsahai18 Date: Sat, 16 Nov 2024 05:26:31 +0000 Subject: [PATCH 06/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/routers/sessions/chat.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 7033a4885..fbc7e6edf 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -10,6 +10,7 @@ from litellm.types.utils import Choices, ModelResponse from starlette.status import HTTP_201_CREATED +from ...activities.task_steps.prompt_step import format_tool from ...autogen.openapi_model import ( ChatInput, ChatResponse, @@ -30,7 +31,6 @@ from ...models.entry.create_entries import create_entries from .metrics import total_tokens_per_user from .router import router -from ...activities.task_steps.prompt_step import format_tool COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" @@ -146,6 +146,7 @@ async def request_anthropic( return model_response + @router.post( "/sessions/{session_id}/chat", status_code=HTTP_201_CREATED, From e4dc3f4c37d8c4e7a94e29adae2632c2db96c0f0 Mon Sep 17 00:00:00 2001 From: vedantsahai18 Date: Sat, 16 Nov 2024 04:50:16 -0500 Subject: [PATCH 07/28] feat(litellm): added gemini models --- .env.example | 1 + llm-proxy/docker-compose.yml | 2 +- llm-proxy/litellm-config.yaml | 13 +++++++++++++ 3 files changed, 15 insertions(+), 1 deletion(-) diff --git a/.env.example b/.env.example index 96fa0abc1..ab4882297 100644 --- a/.env.example +++ b/.env.example @@ -34,6 +34,7 @@ LITELLM_REDIS_PASSWORD= # HUGGING_FACE_HUB_TOKEN= # ANTHROPIC_API_KEY= # GROQ_API_KEY= +# GEMINI_API_KEY= # CLOUDFLARE_API_KEY= # CLOUDFLARE_ACCOUNT_ID= # NVIDIA_NIM_API_KEY= diff --git a/llm-proxy/docker-compose.yml b/llm-proxy/docker-compose.yml index 0b084c385..0b9800b02 100644 --- a/llm-proxy/docker-compose.yml +++ b/llm-proxy/docker-compose.yml @@ -13,7 +13,7 @@ x--litellm-base: &litellm-base - LITELLM_MASTER_KEY=${LITELLM_MASTER_KEY} - DATABASE_URL=${LITELLM_DATABASE_URL:-postgresql://${LITELLM_POSTGRES_USER:-llmproxy}:${LITELLM_POSTGRES_PASSWORD}@${LITELLM_POSTGRES_HOST:-litellm-db}:${LITELLM_POSTGRES_PORT:-5432}/${LITELLM_POSTGRES_DB:-litellm}?sslmode=${LITELLM_POSTGRES_SSLMODE:-prefer_ssl}} - REDIS_URL=${LITELLM_REDIS_URL:-${LITELLM_REDIS_PROTOCOL:-redis}://${LITELLM_REDIS_USER:-default}:${LITELLM_REDIS_PASSWORD:-${LITELLM_REDIS_PASSWORD}}@${LITELLM_REDIS_HOST:-litellm-redis}:${LITELLM_REDIS_PORT:-6379}} - + - GEMINI_API_KEY=${GEMINI_API_KEY} - OPENAI_API_KEY=${OPENAI_API_KEY} - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY} - GROQ_API_KEY=${GROQ_API_KEY} diff --git a/llm-proxy/litellm-config.yaml b/llm-proxy/litellm-config.yaml index 3e0127036..76295f715 100644 --- a/llm-proxy/litellm-config.yaml +++ b/llm-proxy/litellm-config.yaml @@ -6,6 +6,19 @@ model_list: # ------------------- # Gemini models + +- model_name: gemini-pro + litellm_params: + model: gemini/gemini-1.5-pro + api_key: os.environ/GEMINI_API_KEY + tags: ["paid"] + +- model_name: gemini-1.5-pro-latest + litellm_params: + model: gemini/gemini-1.5-pro-latest + api_key: os.environ/GEMINI_API_KEY + tags: ["paid"] + - model_name: gemini-1.5-pro litellm_params: model: vertex_ai_beta/gemini-1.5-pro From c118e9c30b444456510d3e2b42ee1d5d3e33d1f6 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Sun, 17 Nov 2024 08:19:34 +0300 Subject: [PATCH 08/28] fix: fix typespec naming + execute integration hot fix --- agents-api/agents_api/activities/execute_integration.py | 5 ++++- typespec/entries/models.tsp | 8 ++++---- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/agents-api/agents_api/activities/execute_integration.py b/agents-api/agents_api/activities/execute_integration.py index 2badce0f9..d8b36fffb 100644 --- a/agents-api/agents_api/activities/execute_integration.py +++ b/agents-api/agents_api/activities/execute_integration.py @@ -49,7 +49,10 @@ async def execute_integration( arguments=arguments, ) - if "error" in integration_service_response: + if ( + "error" in integration_service_response + and integration_service_response["error"] + ): raise Exception(integration_service_response["error"]) return integration_service_response diff --git a/typespec/entries/models.tsp b/typespec/entries/models.tsp index 9821efa9b..7f8c8b9fa 100644 --- a/typespec/entries/models.tsp +++ b/typespec/entries/models.tsp @@ -56,19 +56,19 @@ model ChatMLAnthropicImageSource { data: T; } -model ChatMLAnthropicInnerImageContentPart { +model ChatMLAnthropicImageContentPart { type: "image" = "image"; source: ChatMLAnthropicImageSource; } /** Anthropic image content part */ -model ChatMLAnthropicImageContentPart { +model ChatMLAnthropicContentPart { tool_use_id: string; type: "tool_result" = "tool_result"; - content: ChatMLTextContentPart[] | ChatMLAnthropicInnerImageContentPart[]; + content: ChatMLTextContentPart[] | ChatMLAnthropicImageContentPart[]; } -alias ChatMLContentPart = ChatMLTextContentPart | ChatMLImageContentPart | ChatMLAnthropicImageContentPart; +alias ChatMLContentPart = ChatMLTextContentPart | ChatMLImageContentPart | ChatMLAnthropicContentPart; model ChatMLMessage { /** The role of the message */ From 1ea618859f505d0397f1e1e66aae9f15eaace067 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Sun, 17 Nov 2024 15:08:55 +0300 Subject: [PATCH 09/28] Fix create session system tool --- agents-api/agents_api/activities/execute_system.py | 9 +++++++++ agents-api/agents_api/routers/sessions/chat.py | 2 +- 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index 02623c3a6..d31684107 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -2,6 +2,7 @@ from typing import Any from uuid import UUID +from ..autogen.Sessions import CreateSessionRequest from beartype import beartype from box import Box, BoxList from fastapi.background import BackgroundTasks @@ -90,6 +91,14 @@ async def execute_system( chat_input=chat_input, ) + if system.operation == "create" and system.resource == "session": + developer_id = arguments.pop("developer_id") + session_id = arguments.pop("session_id", None) + data = CreateSessionRequest(**arguments) + return handler( + developer_id=developer_id, session_id=session_id, data=data + ) + # Handle regular operations if asyncio.iscoroutinefunction(handler): return await handler(**arguments) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index fbc7e6edf..5716165ba 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -79,7 +79,7 @@ async def request_anthropic( "role": msg["role"], "content": transformed_content, } - else: + elif msg["role"] == "user": try: transformed_content = json.loads(msg["content"]) except Exception: From 805b5e3709a0cf7a46e853b5c35f1fd5ee3e2744 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Sun, 17 Nov 2024 12:09:41 +0000 Subject: [PATCH 10/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/activities/execute_system.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index d31684107..ea08e017e 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -2,7 +2,6 @@ from typing import Any from uuid import UUID -from ..autogen.Sessions import CreateSessionRequest from beartype import beartype from box import Box, BoxList from fastapi.background import BackgroundTasks @@ -15,6 +14,7 @@ TextOnlyDocSearchRequest, VectorDocSearchRequest, ) +from ..autogen.Sessions import CreateSessionRequest from ..autogen.Tools import SystemDef from ..common.protocol.tasks import StepContext from ..common.storage_handler import auto_blob_store @@ -95,9 +95,7 @@ async def execute_system( developer_id = arguments.pop("developer_id") session_id = arguments.pop("session_id", None) data = CreateSessionRequest(**arguments) - return handler( - developer_id=developer_id, session_id=session_id, data=data - ) + return handler(developer_id=developer_id, session_id=session_id, data=data) # Handle regular operations if asyncio.iscoroutinefunction(handler): From a59934ac972546739e0add3db1cc06dc02bef370 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Sun, 17 Nov 2024 21:01:55 +0300 Subject: [PATCH 11/28] fix(agents-api): Remove screenshot after every action --- .../agents_api/routers/sessions/chat.py | 3 +- .../utils/integrations/remote_browser.py | 43 +++++++------------ 2 files changed, 18 insertions(+), 28 deletions(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 5716165ba..958094d14 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -55,7 +55,8 @@ async def request_anthropic( # Skip messages that are not assistant or user if msg["role"] not in ["assistant", "user"]: continue - + + # FIXME: return the tool call ids (save assistant message in entries as json dump) # Transform the message content and tool calls if msg["role"] == "assistant": transformed_content = [ diff --git a/integrations-service/integrations/utils/integrations/remote_browser.py b/integrations-service/integrations/utils/integrations/remote_browser.py index 6e5d63375..21ecc3a59 100644 --- a/integrations-service/integrations/utils/integrations/remote_browser.py +++ b/integrations-service/integrations/utils/integrations/remote_browser.py @@ -104,26 +104,26 @@ async def _reset_mouse(self) -> None: window.$$julep$$_initialized = true; """) - @staticmethod - def _with_error_and_screenshot(f): - @wraps(f) - async def wrapper(self: "PlaywrightActions", *args, **kwargs): - try: - result: RemoteBrowserOutput = await f(self, *args, **kwargs) - await self._wait_for_load() + # @staticmethod + # def _with_error_and_screenshot(f): + # @wraps(f) + # async def wrapper(self: "PlaywrightActions", *args, **kwargs): + # try: + # result: RemoteBrowserOutput = await f(self, *args, **kwargs) + # await self._wait_for_load() - screenshot: RemoteBrowserOutput = await self.take_screenshot() + # screenshot: RemoteBrowserOutput = await self.take_screenshot() - return RemoteBrowserOutput( - output=result.output, - base64_image=screenshot.base64_image, - system=result.system or f.__name__, - ) + # return RemoteBrowserOutput( + # output=result.output, + # base64_image=screenshot.base64_image, + # system=result.system or f.__name__, + # ) - except Exception as e: - return RemoteBrowserOutput(error=str(e)) + # except Exception as e: + # return RemoteBrowserOutput(error=str(e)) - return wrapper + # return wrapper async def _get_screen_size(self) -> tuple[int, int]: """Get the current browser viewport size""" @@ -198,7 +198,6 @@ def _overlay_cursor(self, screenshot_bytes: bytes, x: int, y: int) -> bytes: # --- # Actions - @_with_error_and_screenshot async def navigate(self, url: str) -> RemoteBrowserOutput: """Navigate to a specific URL""" await self.page.goto(url) @@ -208,7 +207,6 @@ async def navigate(self, url: str) -> RemoteBrowserOutput: output=url, ) - @_with_error_and_screenshot async def refresh(self) -> RemoteBrowserOutput: """Refresh the current page""" await self.page.reload() @@ -218,7 +216,6 @@ async def refresh(self) -> RemoteBrowserOutput: output="Refreshed page", ) - @_with_error_and_screenshot async def cursor_position(self) -> RemoteBrowserOutput: """Get current mouse coordinates""" x, y = await self._get_mouse_coordinates() @@ -226,7 +223,6 @@ async def cursor_position(self) -> RemoteBrowserOutput: output=f"X={x}, Y={y}", ) - @_with_error_and_screenshot async def press_key(self, key_combination: str) -> RemoteBrowserOutput: """Press a key or key combination""" # Split combination into individual keys @@ -257,7 +253,6 @@ async def press_key(self, key_combination: str) -> RemoteBrowserOutput: output=f"Pressed {key_combination}", ) - @_with_error_and_screenshot async def type_text(self, text: str) -> RemoteBrowserOutput: """Type a string of text""" await self.page.keyboard.type(text) @@ -266,7 +261,6 @@ async def type_text(self, text: str) -> RemoteBrowserOutput: output=f"Typed {text}", ) - @_with_error_and_screenshot async def mouse_move(self, coordinate: tuple[int, int]) -> RemoteBrowserOutput: """Move mouse to specified coordinates""" await self.mouse.move(*coordinate) @@ -275,7 +269,6 @@ async def mouse_move(self, coordinate: tuple[int, int]) -> RemoteBrowserOutput: output=f"Moved mouse to {coordinate}", ) - @_with_error_and_screenshot async def left_click(self) -> RemoteBrowserOutput: """Perform left mouse click""" x, y = await self._get_mouse_coordinates() @@ -285,7 +278,6 @@ async def left_click(self) -> RemoteBrowserOutput: output="Left clicked", ) - @_with_error_and_screenshot async def left_click_drag(self, coordinate: tuple[int, int]) -> RemoteBrowserOutput: """Click and drag to specified coordinates""" await self.mouse.down() @@ -296,7 +288,6 @@ async def left_click_drag(self, coordinate: tuple[int, int]) -> RemoteBrowserOut output=f"Left clicked and dragged to {coordinate}", ) - @_with_error_and_screenshot async def right_click(self) -> RemoteBrowserOutput: """Perform right mouse click""" x, y = await self._get_mouse_coordinates() @@ -306,7 +297,6 @@ async def right_click(self) -> RemoteBrowserOutput: output="Right clicked", ) - @_with_error_and_screenshot async def middle_click(self) -> RemoteBrowserOutput: """Perform middle mouse click""" x, y = await self._get_mouse_coordinates() @@ -316,7 +306,6 @@ async def middle_click(self) -> RemoteBrowserOutput: output="Middle clicked", ) - @_with_error_and_screenshot async def double_click(self) -> RemoteBrowserOutput: """Perform double click""" x, y = await self._get_mouse_coordinates() From 494dee096c9c46f6d17acc03adb95c4361505925 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Sun, 17 Nov 2024 18:02:38 +0000 Subject: [PATCH 12/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/routers/sessions/chat.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 958094d14..f6e7807b4 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -55,7 +55,7 @@ async def request_anthropic( # Skip messages that are not assistant or user if msg["role"] not in ["assistant", "user"]: continue - + # FIXME: return the tool call ids (save assistant message in entries as json dump) # Transform the message content and tool calls if msg["role"] == "assistant": From 1b900d45f9adf699c6b2a857e1d658d849ef6dc4 Mon Sep 17 00:00:00 2001 From: Diwank Singh Tomer Date: Sun, 17 Nov 2024 23:43:49 +0530 Subject: [PATCH 13/28] fix(agents-api): Fix state machine for init_branch -> init_branch Signed-off-by: Diwank Singh Tomer --- agents-api/agents_api/common/protocol/tasks.py | 9 ++++++++- agents-api/gunicorn_conf.py | 6 +++++- integrations-service/gunicorn_conf.py | 6 +++++- 3 files changed, 18 insertions(+), 3 deletions(-) diff --git a/agents-api/agents_api/common/protocol/tasks.py b/agents-api/agents_api/common/protocol/tasks.py index 6a379b6a4..7619cf7d8 100644 --- a/agents-api/agents_api/common/protocol/tasks.py +++ b/agents-api/agents_api/common/protocol/tasks.py @@ -75,7 +75,14 @@ valid_transitions: dict[TransitionType, list[TransitionType]] = { # Start state "init": ["wait", "error", "step", "cancelled", "init_branch", "finish"], - "init_branch": ["wait", "error", "step", "cancelled", "finish_branch"], + "init_branch": [ + "wait", + "error", + "step", + "cancelled", + "init_branch", + "finish_branch", + ], # End states "finish": [], "error": [], diff --git a/agents-api/gunicorn_conf.py b/agents-api/gunicorn_conf.py index f50b39c3d..d7c197e6d 100644 --- a/agents-api/gunicorn_conf.py +++ b/agents-api/gunicorn_conf.py @@ -1,7 +1,11 @@ import multiprocessing +import os + +TESTING = os.getenv("TESTING", "false").lower() == "true" +DEBUG = os.getenv("DEBUG", "false").lower() == "true" # Gunicorn config variables -workers = multiprocessing.cpu_count() - 1 +workers = multiprocessing.cpu_count() - 1 if not (TESTING or DEBUG) else 1 worker_class = "uvicorn.workers.UvicornWorker" bind = "0.0.0.0:8080" keepalive = 120 diff --git a/integrations-service/gunicorn_conf.py b/integrations-service/gunicorn_conf.py index 30f5a2e4f..fe058fe6d 100644 --- a/integrations-service/gunicorn_conf.py +++ b/integrations-service/gunicorn_conf.py @@ -1,7 +1,11 @@ import multiprocessing +import os + +TESTING = os.getenv("TESTING", "false").lower() == "true" +DEBUG = os.getenv("DEBUG", "false").lower() == "true" # Gunicorn config variables -workers = multiprocessing.cpu_count() - 1 +workers = multiprocessing.cpu_count() - 1 if not (TESTING or DEBUG) else 1 worker_class = "uvicorn.workers.UvicornWorker" bind = "0.0.0.0:8000" keepalive = 120 From 3c715954d085194973ba2780eff49213fca44fae Mon Sep 17 00:00:00 2001 From: Diwank Singh Tomer Date: Sun, 17 Nov 2024 23:49:32 +0530 Subject: [PATCH 14/28] fix(agents-api): Fix branched step types not passing subworkflows Signed-off-by: Diwank Singh Tomer --- .../workflows/task_execution/helpers.py | 25 +++++++++++++++---- 1 file changed, 20 insertions(+), 5 deletions(-) diff --git a/agents-api/agents_api/workflows/task_execution/helpers.py b/agents-api/agents_api/workflows/task_execution/helpers.py index 7fbc2c008..6d47b3a1f 100644 --- a/agents-api/agents_api/workflows/task_execution/helpers.py +++ b/agents-api/agents_api/workflows/task_execution/helpers.py @@ -66,7 +66,10 @@ async def execute_switch_branch( case_wf_name = f"`{context.cursor.workflow}`[{context.cursor.step}].case" case_task = execution_input.task.model_copy() - case_task.workflows = [Workflow(name=case_wf_name, steps=[chosen_branch.then])] + case_task.workflows = [ + Workflow(name=case_wf_name, steps=[chosen_branch.then]), + *case_task.workflows, + ] case_execution_input = execution_input.model_copy() case_execution_input.task = case_task @@ -99,7 +102,10 @@ async def execute_if_else_branch( if_else_wf_name += ".then" if condition else ".else" if_else_task = execution_input.task.model_copy() - if_else_task.workflows = [Workflow(name=if_else_wf_name, steps=[chosen_branch])] + if_else_task.workflows = [ + Workflow(name=if_else_wf_name, steps=[chosen_branch]), + *if_else_task.workflows, + ] if_else_execution_input = execution_input.model_copy() if_else_execution_input.task = if_else_task @@ -132,7 +138,10 @@ async def execute_foreach_step( f"`{context.cursor.workflow}`[{context.cursor.step}].foreach[{i}]" ) foreach_task = execution_input.task.model_copy() - foreach_task.workflows = [Workflow(name=foreach_wf_name, steps=[do_step])] + foreach_task.workflows = [ + Workflow(name=foreach_wf_name, steps=[do_step]), + *foreach_task.workflows, + ] foreach_execution_input = execution_input.model_copy() foreach_execution_input.task = foreach_task @@ -170,7 +179,10 @@ async def execute_map_reduce_step( f"`{context.cursor.workflow}`[{context.cursor.step}].mapreduce[{i}]" ) map_reduce_task = execution_input.task.model_copy() - map_reduce_task.workflows = [Workflow(name=workflow_name, steps=[map_defn])] + map_reduce_task.workflows = [ + Workflow(name=workflow_name, steps=[map_defn]), + *map_reduce_task.workflows, + ] map_reduce_execution_input = execution_input.model_copy() map_reduce_execution_input.task = map_reduce_task @@ -234,7 +246,10 @@ async def execute_map_reduce_step_parallel( # Note: Added PAR: prefix to easily identify parallel batches in logs workflow_name = f"PAR:`{context.cursor.workflow}`[{context.cursor.step}].mapreduce[{i}][{j}]" map_reduce_task = execution_input.task.model_copy() - map_reduce_task.workflows = [Workflow(name=workflow_name, steps=[map_defn])] + map_reduce_task.workflows = [ + Workflow(name=workflow_name, steps=[map_defn]), + *map_reduce_task.workflows, + ] map_reduce_execution_input = execution_input.model_copy() map_reduce_execution_input.task = map_reduce_task From 8c6329b180bdadaf013caf3c98e4cc3e89f6ab84 Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Mon, 18 Nov 2024 14:28:21 +0300 Subject: [PATCH 15/28] fix(agents-api + llmproxy): Add litellm fork instead of sdk --- .../activities/task_steps/prompt_step.py | 1 + .../agents_api/routers/sessions/chat.py | 36 +- agents-api/poetry.lock | 649 +++++++++--------- agents-api/pyproject.toml | 2 +- llm-proxy/docker-compose.yml | 2 +- 5 files changed, 340 insertions(+), 350 deletions(-) diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index ad16ed6bd..8a4f74c18 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -26,6 +26,7 @@ def format_tool(tool: Tool) -> dict: + # FIXME: Wrong format for computer_20241022 for litellm if tool.type == "computer_20241022": return { "type": tool.type, diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index f6e7807b4..0a8cd9a8b 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -231,8 +231,11 @@ async def chat( # Get the tools tools = settings.get("tools") or chat_context.get_active_tools() + # Check if using Claude model and has specific tool types + is_claude_model = settings["model"].lower().startswith("claude-3.5") + # Format tools for litellm - formatted_tools = [format_tool(tool) for tool in tools] + formatted_tools = tools if is_claude_model else [format_tool(tool) for tool in tools] # FIXME: Truncate chat messages in the chat context # SCRUM-7 @@ -250,27 +253,24 @@ async def chat( for m in messages ] - # Check if using Claude model and has specific tool types - is_claude_model = settings["model"].lower().startswith("claude-3.5") has_special_tools = any( tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] for tool in formatted_tools ) - - if is_claude_model and has_special_tools: - model_response = await request_anthropic(messages, formatted_tools, settings) - else: - # FIXME: hardcoded tool to a None value as the tool calls are not implemented yet - formatted_tools = None - # Use litellm for other models - model_response = await litellm.acompletion( - messages=messages, - tools=formatted_tools or None, - user=str(developer.id), - tags=developer.tags, - custom_api_key=x_custom_api_key, - **settings, - ) + print("*" * 100) + print("modell", settings["model"]) + print("*" * 100) + + # formatted_tools = None + # Use litellm for other models + model_response = await litellm.acompletion( + messages=messages, + tools=formatted_tools or None, + user=str(developer.id), + tags=developer.tags, + custom_api_key=x_custom_api_key, + **settings, + ) # Save the input and the response to the session history if chat_input.save: diff --git a/agents-api/poetry.lock b/agents-api/poetry.lock index e144ca0f7..b59a9d4e9 100644 --- a/agents-api/poetry.lock +++ b/agents-api/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -13,102 +13,87 @@ files = [ [[package]] name = "aiohttp" -version = "3.10.10" +version = "3.11.2" description = "Async http client/server framework (asyncio)" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be7443669ae9c016b71f402e43208e13ddf00912f47f623ee5994e12fc7d4b3f"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b06b7843929e41a94ea09eb1ce3927865387e3e23ebe108e0d0d09b08d25be9"}, - {file = "aiohttp-3.10.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:333cf6cf8e65f6a1e06e9eb3e643a0c515bb850d470902274239fea02033e9a8"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:274cfa632350225ce3fdeb318c23b4a10ec25c0e2c880eff951a3842cf358ac1"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d9e5e4a85bdb56d224f412d9c98ae4cbd032cc4f3161818f692cd81766eee65a"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b606353da03edcc71130b52388d25f9a30a126e04caef1fd637e31683033abd"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab5a5a0c7a7991d90446a198689c0535be89bbd6b410a1f9a66688f0880ec026"}, - {file = "aiohttp-3.10.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578a4b875af3e0daaf1ac6fa983d93e0bbfec3ead753b6d6f33d467100cdc67b"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:8105fd8a890df77b76dd3054cddf01a879fc13e8af576805d667e0fa0224c35d"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3bcd391d083f636c06a68715e69467963d1f9600f85ef556ea82e9ef25f043f7"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fbc6264158392bad9df19537e872d476f7c57adf718944cc1e4495cbabf38e2a"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e48d5021a84d341bcaf95c8460b152cfbad770d28e5fe14a768988c461b821bc"}, - {file = "aiohttp-3.10.10-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:2609e9ab08474702cc67b7702dbb8a80e392c54613ebe80db7e8dbdb79837c68"}, - {file = "aiohttp-3.10.10-cp310-cp310-win32.whl", hash = "sha256:84afcdea18eda514c25bc68b9af2a2b1adea7c08899175a51fe7c4fb6d551257"}, - {file = "aiohttp-3.10.10-cp310-cp310-win_amd64.whl", hash = "sha256:9c72109213eb9d3874f7ac8c0c5fa90e072d678e117d9061c06e30c85b4cf0e6"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c30a0eafc89d28e7f959281b58198a9fa5e99405f716c0289b7892ca345fe45f"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:258c5dd01afc10015866114e210fb7365f0d02d9d059c3c3415382ab633fcbcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15ecd889a709b0080f02721255b3f80bb261c2293d3c748151274dfea93ac871"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3935f82f6f4a3820270842e90456ebad3af15810cf65932bd24da4463bc0a4c"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:413251f6fcf552a33c981c4709a6bba37b12710982fec8e558ae944bfb2abd38"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1720b4f14c78a3089562b8875b53e36b51c97c51adc53325a69b79b4b48ebcb"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:679abe5d3858b33c2cf74faec299fda60ea9de62916e8b67e625d65bf069a3b7"}, - {file = "aiohttp-3.10.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:79019094f87c9fb44f8d769e41dbb664d6e8fcfd62f665ccce36762deaa0e911"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:fe2fb38c2ed905a2582948e2de560675e9dfbee94c6d5ccdb1301c6d0a5bf092"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:a3f00003de6eba42d6e94fabb4125600d6e484846dbf90ea8e48a800430cc142"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1bbb122c557a16fafc10354b9d99ebf2f2808a660d78202f10ba9d50786384b9"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:30ca7c3b94708a9d7ae76ff281b2f47d8eaf2579cd05971b5dc681db8caac6e1"}, - {file = "aiohttp-3.10.10-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:df9270660711670e68803107d55c2b5949c2e0f2e4896da176e1ecfc068b974a"}, - {file = "aiohttp-3.10.10-cp311-cp311-win32.whl", hash = "sha256:aafc8ee9b742ce75044ae9a4d3e60e3d918d15a4c2e08a6c3c3e38fa59b92d94"}, - {file = "aiohttp-3.10.10-cp311-cp311-win_amd64.whl", hash = "sha256:362f641f9071e5f3ee6f8e7d37d5ed0d95aae656adf4ef578313ee585b585959"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9294bbb581f92770e6ed5c19559e1e99255e4ca604a22c5c6397b2f9dd3ee42c"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a8fa23fe62c436ccf23ff930149c047f060c7126eae3ccea005f0483f27b2e28"}, - {file = "aiohttp-3.10.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5c6a5b8c7926ba5d8545c7dd22961a107526562da31a7a32fa2456baf040939f"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:007ec22fbc573e5eb2fb7dec4198ef8f6bf2fe4ce20020798b2eb5d0abda6138"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9627cc1a10c8c409b5822a92d57a77f383b554463d1884008e051c32ab1b3742"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50edbcad60d8f0e3eccc68da67f37268b5144ecc34d59f27a02f9611c1d4eec7"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a45d85cf20b5e0d0aa5a8dca27cce8eddef3292bc29d72dcad1641f4ed50aa16"}, - {file = "aiohttp-3.10.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b00807e2605f16e1e198f33a53ce3c4523114059b0c09c337209ae55e3823a8"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f2d4324a98062be0525d16f768a03e0bbb3b9fe301ceee99611dc9a7953124e6"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438cd072f75bb6612f2aca29f8bd7cdf6e35e8f160bc312e49fbecab77c99e3a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:baa42524a82f75303f714108fea528ccacf0386af429b69fff141ffef1c534f9"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a7d8d14fe962153fc681f6366bdec33d4356f98a3e3567782aac1b6e0e40109a"}, - {file = "aiohttp-3.10.10-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1277cd707c465cd09572a774559a3cc7c7a28802eb3a2a9472588f062097205"}, - {file = "aiohttp-3.10.10-cp312-cp312-win32.whl", hash = "sha256:59bb3c54aa420521dc4ce3cc2c3fe2ad82adf7b09403fa1f48ae45c0cbde6628"}, - {file = "aiohttp-3.10.10-cp312-cp312-win_amd64.whl", hash = "sha256:0e1b370d8007c4ae31ee6db7f9a2fe801a42b146cec80a86766e7ad5c4a259cf"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ad7593bb24b2ab09e65e8a1d385606f0f47c65b5a2ae6c551db67d6653e78c28"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1eb89d3d29adaf533588f209768a9c02e44e4baf832b08118749c5fad191781d"}, - {file = "aiohttp-3.10.10-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3fe407bf93533a6fa82dece0e74dbcaaf5d684e5a51862887f9eaebe6372cd79"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50aed5155f819873d23520919e16703fc8925e509abbb1a1491b0087d1cd969e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4f05e9727ce409358baa615dbeb9b969db94324a79b5a5cea45d39bdb01d82e6"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3dffb610a30d643983aeb185ce134f97f290f8935f0abccdd32c77bed9388b42"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa6658732517ddabe22c9036479eabce6036655ba87a0224c612e1ae6af2087e"}, - {file = "aiohttp-3.10.10-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:741a46d58677d8c733175d7e5aa618d277cd9d880301a380fd296975a9cdd7bc"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e00e3505cd80440f6c98c6d69269dcc2a119f86ad0a9fd70bccc59504bebd68a"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ffe595f10566f8276b76dc3a11ae4bb7eba1aac8ddd75811736a15b0d5311414"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdfcf6443637c148c4e1a20c48c566aa694fa5e288d34b20fcdc58507882fed3"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d183cf9c797a5291e8301790ed6d053480ed94070637bfaad914dd38b0981f67"}, - {file = "aiohttp-3.10.10-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:77abf6665ae54000b98b3c742bc6ea1d1fb31c394bcabf8b5d2c1ac3ebfe7f3b"}, - {file = "aiohttp-3.10.10-cp313-cp313-win32.whl", hash = "sha256:4470c73c12cd9109db8277287d11f9dd98f77fc54155fc71a7738a83ffcc8ea8"}, - {file = "aiohttp-3.10.10-cp313-cp313-win_amd64.whl", hash = "sha256:486f7aabfa292719a2753c016cc3a8f8172965cabb3ea2e7f7436c7f5a22a151"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1b66ccafef7336a1e1f0e389901f60c1d920102315a56df85e49552308fc0486"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:acd48d5b80ee80f9432a165c0ac8cbf9253eaddb6113269a5e18699b33958dbb"}, - {file = "aiohttp-3.10.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3455522392fb15ff549d92fbf4b73b559d5e43dc522588f7eb3e54c3f38beee7"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c3b868724137f713a38376fef8120c166d1eadd50da1855c112fe97954aed8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:da1dee8948d2137bb51fbb8a53cce6b1bcc86003c6b42565f008438b806cccd8"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5ce2ce7c997e1971b7184ee37deb6ea9922ef5163c6ee5aa3c274b05f9e12fa"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28529e08fde6f12eba8677f5a8608500ed33c086f974de68cc65ab218713a59d"}, - {file = "aiohttp-3.10.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7db54c7914cc99d901d93a34704833568d86c20925b2762f9fa779f9cd2e70f"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03a42ac7895406220124c88911ebee31ba8b2d24c98507f4a8bf826b2937c7f2"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7e338c0523d024fad378b376a79faff37fafb3c001872a618cde1d322400a572"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:038f514fe39e235e9fef6717fbf944057bfa24f9b3db9ee551a7ecf584b5b480"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:64f6c17757251e2b8d885d728b6433d9d970573586a78b78ba8929b0f41d045a"}, - {file = "aiohttp-3.10.10-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:93429602396f3383a797a2a70e5f1de5df8e35535d7806c9f91df06f297e109b"}, - {file = "aiohttp-3.10.10-cp38-cp38-win32.whl", hash = "sha256:c823bc3971c44ab93e611ab1a46b1eafeae474c0c844aff4b7474287b75fe49c"}, - {file = "aiohttp-3.10.10-cp38-cp38-win_amd64.whl", hash = "sha256:54ca74df1be3c7ca1cf7f4c971c79c2daf48d9aa65dea1a662ae18926f5bc8ce"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:01948b1d570f83ee7bbf5a60ea2375a89dfb09fd419170e7f5af029510033d24"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9fc1500fd2a952c5c8e3b29aaf7e3cc6e27e9cfc0a8819b3bce48cc1b849e4cc"}, - {file = "aiohttp-3.10.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f614ab0c76397661b90b6851a030004dac502e48260ea10f2441abd2207fbcc7"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00819de9e45d42584bed046314c40ea7e9aea95411b38971082cad449392b08c"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:05646ebe6b94cc93407b3bf34b9eb26c20722384d068eb7339de802154d61bc5"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:998f3bd3cfc95e9424a6acd7840cbdd39e45bc09ef87533c006f94ac47296090"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9010c31cd6fa59438da4e58a7f19e4753f7f264300cd152e7f90d4602449762"}, - {file = "aiohttp-3.10.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ea7ffc6d6d6f8a11e6f40091a1040995cdff02cfc9ba4c2f30a516cb2633554"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ef9c33cc5cbca35808f6c74be11eb7f5f6b14d2311be84a15b594bd3e58b5527"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ce0cdc074d540265bfeb31336e678b4e37316849d13b308607efa527e981f5c2"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:597a079284b7ee65ee102bc3a6ea226a37d2b96d0418cc9047490f231dc09fe8"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:7789050d9e5d0c309c706953e5e8876e38662d57d45f936902e176d19f1c58ab"}, - {file = "aiohttp-3.10.10-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e7f8b04d83483577fd9200461b057c9f14ced334dcb053090cea1da9c8321a91"}, - {file = "aiohttp-3.10.10-cp39-cp39-win32.whl", hash = "sha256:c02a30b904282777d872266b87b20ed8cc0d1501855e27f831320f471d54d983"}, - {file = "aiohttp-3.10.10-cp39-cp39-win_amd64.whl", hash = "sha256:edfe3341033a6b53a5c522c802deb2079eee5cbfbb0af032a55064bd65c73a23"}, - {file = "aiohttp-3.10.10.tar.gz", hash = "sha256:0631dd7c9f0822cc61c88586ca76d5b5ada26538097d0f1df510b082bad3411a"}, + {file = "aiohttp-3.11.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:783741f534c14957fbe657d62a34b947ec06db23d45a2fd4a8aeb73d9c84d7e6"}, + {file = "aiohttp-3.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:435f7a08d8aa42371a94e7c141205a9cb092ba551084b5e0c57492e6673601a3"}, + {file = "aiohttp-3.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c681f34e2814bc6e1eef49752b338061b94a42c92734d0be9513447d3f83718c"}, + {file = "aiohttp-3.11.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73a664478ae1ea011b5a710fb100b115ca8b2146864fa0ce4143ff944df714b8"}, + {file = "aiohttp-3.11.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1d06c8fd8b453c3e553c956bd3b8395100401060430572174bb7876dd95ad49"}, + {file = "aiohttp-3.11.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b1f4844909321ef2c1cee50ddeccbd6018cd8c8d1ddddda3f553e94a5859497"}, + {file = "aiohttp-3.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdc6f8dce09281ae534eaf08a54f0d38612398375f28dad733a8885f3bf9b978"}, + {file = "aiohttp-3.11.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d2d942421cf3a1d1eceae8fa192f1fbfb74eb9d3e207d35ad2696bd2ce2c987c"}, + {file = "aiohttp-3.11.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:08ebe7a1d6c1e5ca766d68407280d69658f5f98821c2ba6c41c63cabfed159af"}, + {file = "aiohttp-3.11.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:2793d3297f3e49015140e6d3ea26142c967e07998e2fb00b6ee8d041138fbc4e"}, + {file = "aiohttp-3.11.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:4a23475d8d5c56e447b7752a1e2ac267c1f723f765e406c81feddcd16cdc97bc"}, + {file = "aiohttp-3.11.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:556564d89e2f4a6e8fe000894c03e4e84cf0b6cfa5674e425db122633ee244d1"}, + {file = "aiohttp-3.11.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:57993f406ce3f114b2a6756d7809be3ffd0cc40f33e8f8b9a4aa1b027fd4e3eb"}, + {file = "aiohttp-3.11.2-cp310-cp310-win32.whl", hash = "sha256:177b000efaf8d2f7012c649e8aee5b0bf488677b1162be5e7511aa4f9d567607"}, + {file = "aiohttp-3.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:ff5d22eece44528023254b595c670dfcf9733ac6af74c4b6cb4f6a784dc3870c"}, + {file = "aiohttp-3.11.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:50e0aee4adc9abcd2109c618a8d1b2c93b85ac277b24a003ab147d91e068b06d"}, + {file = "aiohttp-3.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9aa4e68f1e4f303971ec42976fb170204fb5092de199034b57199a1747e78a2d"}, + {file = "aiohttp-3.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d84930b4145991214602372edd7305fc76b700220db79ac0dd57d3afd0f0a1ca"}, + {file = "aiohttp-3.11.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4ec8afd362356b8798c8caa806e91deb3f0602d8ffae8e91d2d3ced2a90c35e"}, + {file = "aiohttp-3.11.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb0544a0e8294a5a5e20d3cacdaaa9a911d7c0a9150f5264aef36e7d8fdfa07e"}, + {file = "aiohttp-3.11.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7b0a1618060e3f5aa73d3526ca2108a16a1b6bf86612cd0bb2ddcbef9879d06"}, + {file = "aiohttp-3.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d878a0186023ac391861958035174d0486f3259cabf8fd94e591985468da3ea"}, + {file = "aiohttp-3.11.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e33a7eddcd07545ccf5c3ab230f60314a17dc33e285475e8405e26e21f02660"}, + {file = "aiohttp-3.11.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4d7fad8c456d180a6d2f44c41cfab4b80e2e81451815825097db48b8293f59d5"}, + {file = "aiohttp-3.11.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8d954ba0eae7f33884d27dc00629ca4389d249eb8d26ca07c30911257cae8c96"}, + {file = "aiohttp-3.11.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:afa55e863224e664a782effa62245df73fdfc55aee539bed6efacf35f6d4e4b7"}, + {file = "aiohttp-3.11.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:10a5f91c319d9d4afba812f72984816b5fcd20742232ff7ecc1610ffbf3fc64d"}, + {file = "aiohttp-3.11.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6e8e19a80ba194db5c06915a9df23c0c06e0e9ca9a4db9386a6056cca555a027"}, + {file = "aiohttp-3.11.2-cp311-cp311-win32.whl", hash = "sha256:9c8d1db4f65bbc9d75b7b271d68fb996f1c8c81a525263862477d93611856c2d"}, + {file = "aiohttp-3.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:2adb967454e10e69478ba4a8d8afbba48a7c7a8619216b7c807f8481cc66ddfb"}, + {file = "aiohttp-3.11.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f833a80d9de9307d736b6af58c235b17ef7f90ebea7b9c49cd274dec7a66a2f1"}, + {file = "aiohttp-3.11.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:382f853516664d2ebfc75dc01da4a10fdef5edcb335fe7b45cf471ce758ecb18"}, + {file = "aiohttp-3.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d3a2bcf6c81639a165da93469e1e0aff67c956721f3fa9c0560f07dd1e505116"}, + {file = "aiohttp-3.11.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de3b4d5fb5d69749104b880a157f38baeea7765c93d9cd3837cedd5b84729e10"}, + {file = "aiohttp-3.11.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0a90a0dc4b054b5af299a900bf950fe8f9e3e54322bc405005f30aa5cacc5c98"}, + {file = "aiohttp-3.11.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32334f35824811dd20a12cc90825d000e6b50faaeaa71408d42269151a66140d"}, + {file = "aiohttp-3.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cba0b8d25aa2d450762f3dd6df85498f5e7c3ad0ddeb516ef2b03510f0eea32"}, + {file = "aiohttp-3.11.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bbb2dbc2701ab7e9307ca3a8fa4999c5b28246968e0a0202a5afabf48a42e22"}, + {file = "aiohttp-3.11.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:97fba98fc5d9ccd3d33909e898d00f2494d6a9eec7cbda3d030632e2c8bb4d00"}, + {file = "aiohttp-3.11.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0ebdf5087e2ce903d8220cc45dcece90c2199ae4395fd83ca616fcc81010db2c"}, + {file = "aiohttp-3.11.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:122768e3ae9ce74f981b46edefea9c6e5a40aea38aba3ac50168e6370459bf20"}, + {file = "aiohttp-3.11.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5587da333b7d280a312715b843d43e734652aa382cba824a84a67c81f75b338b"}, + {file = "aiohttp-3.11.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:85de9904bc360fd29a98885d2bfcbd4e02ab33c53353cb70607f2bea2cb92468"}, + {file = "aiohttp-3.11.2-cp312-cp312-win32.whl", hash = "sha256:b470de64d17156c37e91effc109d3b032b39867000e2c126732fe01d034441f9"}, + {file = "aiohttp-3.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:3f617a48b70f4843d54f52440ea1e58da6bdab07b391a3a6aed8d3b311a4cc04"}, + {file = "aiohttp-3.11.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5d90b5a3b0f32a5fecf5dd83d828713986c019585f5cddf40d288ff77f366615"}, + {file = "aiohttp-3.11.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d23854e5867650d40cba54d49956aad8081452aa80b2cf0d8c310633f4f48510"}, + {file = "aiohttp-3.11.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:486273d3b5af75a80c31c311988931bdd2a4b96a74d5c7f422bad948f99988ef"}, + {file = "aiohttp-3.11.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9075313f8e41b481e4cb10af405054564b0247dc335db5398ed05f8ec38787e2"}, + {file = "aiohttp-3.11.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44b69c69c194ffacbc50165911cf023a4b1b06422d1e1199d3aea82eac17004e"}, + {file = "aiohttp-3.11.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b339d91ac9060bd6ecdc595a82dc151045e5d74f566e0864ef3f2ba0887fec42"}, + {file = "aiohttp-3.11.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64e8f5178958a9954043bc8cd10a5ae97352c3f2fc99aa01f2aebb0026010910"}, + {file = "aiohttp-3.11.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3129151378f858cdc4a0a4df355c9a0d060ab49e2eea7e62e9f085bac100551b"}, + {file = "aiohttp-3.11.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:14eb6c628432720e41b4fab1ada879d56cfe7034159849e083eb536b4c2afa99"}, + {file = "aiohttp-3.11.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:e57a10aacedcf24666f4c90d03e599f71d172d1c5e00dcf48205c445806745b0"}, + {file = "aiohttp-3.11.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:66e58a2e8c7609a3545c4b38fb8b01a6b8346c4862e529534f7674c5265a97b8"}, + {file = "aiohttp-3.11.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9b6d15adc9768ff167614ca853f7eeb6ee5f1d55d5660e3af85ce6744fed2b82"}, + {file = "aiohttp-3.11.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:2914061f5ca573f990ec14191e6998752fa8fe50d518e3405410353c3f44aa5d"}, + {file = "aiohttp-3.11.2-cp313-cp313-win32.whl", hash = "sha256:1c2496182e577042e0e07a328d91c949da9e77a2047c7291071e734cd7a6e780"}, + {file = "aiohttp-3.11.2-cp313-cp313-win_amd64.whl", hash = "sha256:cccb2937bece1310c5c0163d0406aba170a2e5fb1f0444d7b0e7fdc9bd6bb713"}, + {file = "aiohttp-3.11.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:994cb893936dd2e1803655ae8667a45066bfd53360b148e22b4e3325cc5ea7a3"}, + {file = "aiohttp-3.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3666c750b73ce463a413692e3a57c60f7089e2d9116a2aa5a0f0eaf2ae325148"}, + {file = "aiohttp-3.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6ad9a7d2a3a0f235184426425f80bd3b26c66b24fd5fddecde66be30c01ebe6e"}, + {file = "aiohttp-3.11.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c979fc92aba66730b66099cd5becb42d869a26c0011119bc1c2478408a8bf7a"}, + {file = "aiohttp-3.11.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:766d0ebf8703d28f854f945982aa09224d5a27a29594c70d921c43c3930fe7ac"}, + {file = "aiohttp-3.11.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79efd1ee3827b2f16797e14b1e45021206c3271249b4d0025014466d416d7413"}, + {file = "aiohttp-3.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d6e069b882c1fdcbe5577dc4be372eda705180197140577a4cddb648c29d22e"}, + {file = "aiohttp-3.11.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5e9a766c346b2ed7e88937919d84ed64b4ef489dad1d8939f806ee52901dc142"}, + {file = "aiohttp-3.11.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2b02a68b9445c70d7f5c8b578c5f5e5866b1d67ca23eb9e8bc8658ae9e3e2c74"}, + {file = "aiohttp-3.11.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:374baefcb1b6275f350da605951f5f02487a9bc84a574a7d5b696439fabd49a3"}, + {file = "aiohttp-3.11.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:d2f991c18132f3e505c108147925372ffe4549173b7c258cf227df1c5977a635"}, + {file = "aiohttp-3.11.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:34f37c59b12bc3afc52bab6fcd9cd3be82ff01c4598a84cbea934ccb3a9c54a0"}, + {file = "aiohttp-3.11.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:33af11eca7bb0f5c6ffaf5e7d9d2336c2448f9c6279b93abdd6f3c35f9ee321f"}, + {file = "aiohttp-3.11.2-cp39-cp39-win32.whl", hash = "sha256:83a70e22e0f6222effe7f29fdeba6c6023f9595e59a0479edacfbd7de4b77bb7"}, + {file = "aiohttp-3.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:c28c1677ea33ccb8b14330560094cc44d3ff4fad617a544fd18beb90403fe0f1"}, + {file = "aiohttp-3.11.2.tar.gz", hash = "sha256:68d1f46f9387db3785508f5225d3acbc5825ca13d9c29f2b5cce203d5863eb79"}, ] [package.dependencies] @@ -117,7 +102,8 @@ aiosignal = ">=1.1.2" attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.12.0,<2.0" +propcache = ">=0.2.0" +yarl = ">=1.17.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] @@ -498,17 +484,17 @@ numpy = ">=2.0.0,<3.0.0" [[package]] name = "boto3" -version = "1.35.57" +version = "1.35.63" description = "The AWS SDK for Python" optional = false python-versions = ">=3.8" files = [ - {file = "boto3-1.35.57-py3-none-any.whl", hash = "sha256:9edf49640c79a05b0a72f4c2d1e24dfc164344b680535a645f455ac624dc3680"}, - {file = "boto3-1.35.57.tar.gz", hash = "sha256:db58348849a5af061f0f5ec9c3b699da5221ca83354059fdccb798e3ddb6b62a"}, + {file = "boto3-1.35.63-py3-none-any.whl", hash = "sha256:d0f938d4f6f392b6ffc5e75fff14a42e5bbb5228675a0367c8af55398abadbec"}, + {file = "boto3-1.35.63.tar.gz", hash = "sha256:deb593d9a0fb240deb4c43e4da8e6626d7c36be7b2fd2fe28f49d44d395b7de0"}, ] [package.dependencies] -botocore = ">=1.35.57,<1.36.0" +botocore = ">=1.35.63,<1.36.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.10.0,<0.11.0" @@ -517,13 +503,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" -version = "1.35.57" +version = "1.35.63" description = "Low-level, data-driven core of boto 3." optional = false python-versions = ">=3.8" files = [ - {file = "botocore-1.35.57-py3-none-any.whl", hash = "sha256:92ddd02469213766872cb2399269dd20948f90348b42bf08379881d5e946cc34"}, - {file = "botocore-1.35.57.tar.gz", hash = "sha256:d96306558085baf0bcb3b022d7a8c39c93494f031edb376694d2b2dcd0e81327"}, + {file = "botocore-1.35.63-py3-none-any.whl", hash = "sha256:0ca1200694a4c0a3fa846795d8e8a08404c214e21195eb9e010c4b8a4ca78a4a"}, + {file = "botocore-1.35.63.tar.gz", hash = "sha256:2b8196bab0a997d206c3d490b52e779ef47dffb68c57c685443f77293aca1589"}, ] [package.dependencies] @@ -948,13 +934,13 @@ files = [ [[package]] name = "datamodel-code-generator" -version = "0.26.2" +version = "0.26.3" description = "Datamodel Code Generator" optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "datamodel_code_generator-0.26.2-py3-none-any.whl", hash = "sha256:f62576a27c9083f2b22cf8c97ed79a394155f131db3e3bf55cd72893f48c5d80"}, - {file = "datamodel_code_generator-0.26.2.tar.gz", hash = "sha256:03c153434d5a308e31fb4528c0199015054570642ccda8cd2f2cb3cc2c497622"}, + {file = "datamodel_code_generator-0.26.3-py3-none-any.whl", hash = "sha256:f1f8f1cef14f138fa239f987d4640837bb68d53c5f08d8673a7bde275b929fd8"}, + {file = "datamodel_code_generator-0.26.3.tar.gz", hash = "sha256:b58e0800eb6448e1d1df02f4586207c1e3631c4a188531d154b00b3cf2f95fd8"}, ] [package.dependencies] @@ -1128,13 +1114,13 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth [[package]] name = "fastapi" -version = "0.115.4" +version = "0.115.5" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" optional = false python-versions = ">=3.8" files = [ - {file = "fastapi-0.115.4-py3-none-any.whl", hash = "sha256:0b504a063ffb3cf96a5e27dc1bc32c80ca743a2528574f9cdc77daa2d31b4742"}, - {file = "fastapi-0.115.4.tar.gz", hash = "sha256:db653475586b091cb8b2fec2ac54a680ac6a158e07406e1abae31679e8826349"}, + {file = "fastapi-0.115.5-py3-none-any.whl", hash = "sha256:596b95adbe1474da47049e802f9a65ab2ffa9c2b07e7efee70eb8a66c9f2f796"}, + {file = "fastapi-0.115.5.tar.gz", hash = "sha256:0e7a4d0dc0d01c68df21887cce0945e72d3c48b9f4f79dfe7a7d53aa08fbb289"}, ] [package.dependencies] @@ -1446,13 +1432,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.6" +version = "1.0.7" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, - {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, + {file = "httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd"}, + {file = "httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c"}, ] [package.dependencies] @@ -1721,22 +1707,22 @@ colors = ["colorama (>=0.4.6)"] [[package]] name = "jedi" -version = "0.19.1" +version = "0.19.2" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, ] [package.dependencies] -parso = ">=0.8.3,<0.9.0" +parso = ">=0.8.4,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] [[package]] name = "jinja2" @@ -1770,84 +1756,84 @@ Jinja2 = ">=2.2" [[package]] name = "jiter" -version = "0.7.0" +version = "0.7.1" description = "Fast iterable JSON parser." optional = false python-versions = ">=3.8" files = [ - {file = "jiter-0.7.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:e14027f61101b3f5e173095d9ecf95c1cac03ffe45a849279bde1d97e559e314"}, - {file = "jiter-0.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:979ec4711c2e37ac949561858bd42028884c9799516a923e1ff0b501ef341a4a"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:662d5d3cca58ad6af7a3c6226b641c8655de5beebcb686bfde0df0f21421aafa"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1d89008fb47043a469f97ad90840b97ba54e7c3d62dc7cbb6cbf938bd0caf71d"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8b16c35c846a323ce9067170d5ab8c31ea3dbcab59c4f7608bbbf20c2c3b43f"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c9e82daaa1b0a68704f9029b81e664a5a9de3e466c2cbaabcda5875f961702e7"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43a87a9f586636e1f0dd3651a91f79b491ea0d9fd7cbbf4f5c463eebdc48bda7"}, - {file = "jiter-0.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2ec05b1615f96cc3e4901678bc863958611584072967d9962f9e571d60711d52"}, - {file = "jiter-0.7.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a5cb97e35370bde7aa0d232a7f910f5a0fbbc96bc0a7dbaa044fd5cd6bcd7ec3"}, - {file = "jiter-0.7.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:cb316dacaf48c8c187cea75d0d7f835f299137e6fdd13f691dff8f92914015c7"}, - {file = "jiter-0.7.0-cp310-none-win32.whl", hash = "sha256:243f38eb4072763c54de95b14ad283610e0cd3bf26393870db04e520f60eebb3"}, - {file = "jiter-0.7.0-cp310-none-win_amd64.whl", hash = "sha256:2221d5603c139f6764c54e37e7c6960c469cbcd76928fb10d15023ba5903f94b"}, - {file = "jiter-0.7.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:91cec0ad755bd786c9f769ce8d843af955df6a8e56b17658771b2d5cb34a3ff8"}, - {file = "jiter-0.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:feba70a28a27d962e353e978dbb6afd798e711c04cb0b4c5e77e9d3779033a1a"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a9d866ec066c3616cacb8535dbda38bb1d470b17b25f0317c4540182bc886ce2"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8e7a7a00b6f9f18289dd563596f97ecaba6c777501a8ba04bf98e03087bcbc60"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9aaf564094c7db8687f2660605e099f3d3e6ea5e7135498486674fcb78e29165"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a4d27e09825c1b3c7a667adb500ce8b840e8fc9f630da8454b44cdd4fb0081bb"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ca7c287da9c1d56dda88da1d08855a787dbb09a7e2bd13c66a2e288700bd7c7"}, - {file = "jiter-0.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:db19a6d160f093cbc8cd5ea2abad420b686f6c0e5fb4f7b41941ebc6a4f83cda"}, - {file = "jiter-0.7.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:6e46a63c7f877cf7441ffc821c28287cfb9f533ae6ed707bde15e7d4dfafa7ae"}, - {file = "jiter-0.7.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7ba426fa7ff21cb119fa544b75dd3fbee6a70e55a5829709c0338d07ccd30e6d"}, - {file = "jiter-0.7.0-cp311-none-win32.whl", hash = "sha256:c07f55a64912b0c7982377831210836d2ea92b7bd343fca67a32212dd72e38e0"}, - {file = "jiter-0.7.0-cp311-none-win_amd64.whl", hash = "sha256:ed27b2c43e1b5f6c7fedc5c11d4d8bfa627de42d1143d87e39e2e83ddefd861a"}, - {file = "jiter-0.7.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac7930bcaaeb1e229e35c91c04ed2e9f39025b86ee9fc3141706bbf6fff4aeeb"}, - {file = "jiter-0.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:571feae3e7c901a8eedde9fd2865b0dfc1432fb15cab8c675a8444f7d11b7c5d"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8af4df8a262fa2778b68c2a03b6e9d1cb4d43d02bea6976d46be77a3a331af1"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bd028d4165097a611eb0c7494d8c1f2aebd46f73ca3200f02a175a9c9a6f22f5"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c6b487247c7836810091e9455efe56a52ec51bfa3a222237e1587d04d3e04527"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e6d28a92f28814e1a9f2824dc11f4e17e1df1f44dc4fdeb94c5450d34bcb2602"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90443994bbafe134f0b34201dad3ebe1c769f0599004084e046fb249ad912425"}, - {file = "jiter-0.7.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f9abf464f9faac652542ce8360cea8e68fba2b78350e8a170248f9bcc228702a"}, - {file = "jiter-0.7.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db7a8d99fc5f842f7d2852f06ccaed066532292c41723e5dff670c339b649f88"}, - {file = "jiter-0.7.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:15cf691ebd8693b70c94627d6b748f01e6d697d9a6e9f2bc310934fcfb7cf25e"}, - {file = "jiter-0.7.0-cp312-none-win32.whl", hash = "sha256:9dcd54fa422fb66ca398bec296fed5f58e756aa0589496011cfea2abb5be38a5"}, - {file = "jiter-0.7.0-cp312-none-win_amd64.whl", hash = "sha256:cc989951f73f9375b8eacd571baaa057f3d7d11b7ce6f67b9d54642e7475bfad"}, - {file = "jiter-0.7.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:24cecd18df540963cd27c08ca5ce1d0179f229ff78066d9eecbe5add29361340"}, - {file = "jiter-0.7.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d41b46236b90b043cca73785674c23d2a67d16f226394079d0953f94e765ed76"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b160db0987171365c153e406a45dcab0ee613ae3508a77bfff42515cb4ce4d6e"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d1c8d91e0f0bd78602eaa081332e8ee4f512c000716f5bc54e9a037306d693a7"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:997706c683195eeff192d2e5285ce64d2a610414f37da3a3f2625dcf8517cf90"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ea52a8a0ff0229ab2920284079becd2bae0688d432fca94857ece83bb49c541"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d77449d2738cf74752bb35d75ee431af457e741124d1db5e112890023572c7c"}, - {file = "jiter-0.7.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a8203519907a1d81d6cb00902c98e27c2d0bf25ce0323c50ca594d30f5f1fbcf"}, - {file = "jiter-0.7.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41d15ccc53931c822dd7f1aebf09faa3cda2d7b48a76ef304c7dbc19d1302e51"}, - {file = "jiter-0.7.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:febf3179b2fabf71fbd2fd52acb8594163bb173348b388649567a548f356dbf6"}, - {file = "jiter-0.7.0-cp313-none-win32.whl", hash = "sha256:4a8e2d866e7eda19f012444e01b55079d8e1c4c30346aaac4b97e80c54e2d6d3"}, - {file = "jiter-0.7.0-cp313-none-win_amd64.whl", hash = "sha256:7417c2b928062c496f381fb0cb50412eee5ad1d8b53dbc0e011ce45bb2de522c"}, - {file = "jiter-0.7.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:9c62c737b5368e51e74960a08fe1adc807bd270227291daede78db24d5fbf556"}, - {file = "jiter-0.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e4640722b1bef0f6e342fe4606aafaae0eb4f4be5c84355bb6867f34400f6688"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f367488c3b9453eab285424c61098faa1cab37bb49425e69c8dca34f2dfe7d69"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0cf5d42beb3514236459454e3287db53d9c4d56c4ebaa3e9d0efe81b19495129"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cc5190ea1113ee6f7252fa8a5fe5a6515422e378356c950a03bbde5cafbdbaab"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:63ee47a149d698796a87abe445fc8dee21ed880f09469700c76c8d84e0d11efd"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48592c26ea72d3e71aa4bea0a93454df907d80638c3046bb0705507b6704c0d7"}, - {file = "jiter-0.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:79fef541199bd91cfe8a74529ecccb8eaf1aca38ad899ea582ebbd4854af1e51"}, - {file = "jiter-0.7.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d1ef6bb66041f2514739240568136c81b9dcc64fd14a43691c17ea793b6535c0"}, - {file = "jiter-0.7.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aca4d950863b1c238e315bf159466e064c98743eef3bd0ff9617e48ff63a4715"}, - {file = "jiter-0.7.0-cp38-none-win32.whl", hash = "sha256:897745f230350dcedb8d1ebe53e33568d48ea122c25e6784402b6e4e88169be7"}, - {file = "jiter-0.7.0-cp38-none-win_amd64.whl", hash = "sha256:b928c76a422ef3d0c85c5e98c498ce3421b313c5246199541e125b52953e1bc0"}, - {file = "jiter-0.7.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:c9b669ff6f8ba08270dee9ccf858d3b0203b42314a428a1676762f2d390fbb64"}, - {file = "jiter-0.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b5be919bacd73ca93801c3042bce6e95cb9c555a45ca83617b9b6c89df03b9c2"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a282e1e8a396dabcea82d64f9d05acf7efcf81ecdd925b967020dcb0e671c103"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:17ecb1a578a56e97a043c72b463776b5ea30343125308f667fb8fce4b3796735"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7b6045fa0527129218cdcd8a8b839f678219686055f31ebab35f87d354d9c36e"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:189cc4262a92e33c19d4fd24018f5890e4e6da5b2581f0059938877943f8298c"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c138414839effbf30d185e30475c6dc8a16411a1e3681e5fd4605ab1233ac67a"}, - {file = "jiter-0.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2791604acef33da6b72d5ecf885a32384bcaf9aa1e4be32737f3b8b9588eef6a"}, - {file = "jiter-0.7.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ae60ec89037a78d60bbf3d8b127f1567769c8fa24886e0abed3f622791dea478"}, - {file = "jiter-0.7.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:836f03dea312967635233d826f783309b98cfd9ccc76ac776e224cfcef577862"}, - {file = "jiter-0.7.0-cp39-none-win32.whl", hash = "sha256:ebc30ae2ce4bc4986e1764c404b4ea1924f926abf02ce92516485098f8545374"}, - {file = "jiter-0.7.0-cp39-none-win_amd64.whl", hash = "sha256:abf596f951370c648f37aa9899deab296c42a3829736e598b0dd10b08f77a44d"}, - {file = "jiter-0.7.0.tar.gz", hash = "sha256:c061d9738535497b5509f8970584f20de1e900806b239a39a9994fc191dad630"}, + {file = "jiter-0.7.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:262e96d06696b673fad6f257e6a0abb6e873dc22818ca0e0600f4a1189eb334f"}, + {file = "jiter-0.7.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be6de02939aac5be97eb437f45cfd279b1dc9de358b13ea6e040e63a3221c40d"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935f10b802bc1ce2b2f61843e498c7720aa7f4e4bb7797aa8121eab017293c3d"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9cd3cccccabf5064e4bb3099c87bf67db94f805c1e62d1aefd2b7476e90e0ee2"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4aa919ebfc5f7b027cc368fe3964c0015e1963b92e1db382419dadb098a05192"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ae2d01e82c94491ce4d6f461a837f63b6c4e6dd5bb082553a70c509034ff3d4"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f9568cd66dbbdab67ae1b4c99f3f7da1228c5682d65913e3f5f95586b3cb9a9"}, + {file = "jiter-0.7.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9ecbf4e20ec2c26512736284dc1a3f8ed79b6ca7188e3b99032757ad48db97dc"}, + {file = "jiter-0.7.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b1a0508fddc70ce00b872e463b387d49308ef02b0787992ca471c8d4ba1c0fa1"}, + {file = "jiter-0.7.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f84c9996664c460f24213ff1e5881530abd8fafd82058d39af3682d5fd2d6316"}, + {file = "jiter-0.7.1-cp310-none-win32.whl", hash = "sha256:c915e1a1960976ba4dfe06551ea87063b2d5b4d30759012210099e712a414d9f"}, + {file = "jiter-0.7.1-cp310-none-win_amd64.whl", hash = "sha256:75bf3b7fdc5c0faa6ffffcf8028a1f974d126bac86d96490d1b51b3210aa0f3f"}, + {file = "jiter-0.7.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ad04a23a91f3d10d69d6c87a5f4471b61c2c5cd6e112e85136594a02043f462c"}, + {file = "jiter-0.7.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e47a554de88dff701226bb5722b7f1b6bccd0b98f1748459b7e56acac2707a5"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e44fff69c814a2e96a20b4ecee3e2365e9b15cf5fe4e00869d18396daa91dab"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:df0a1d05081541b45743c965436f8b5a1048d6fd726e4a030113a2699a6046ea"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f22cf8f236a645cb6d8ffe2a64edb5d2b66fb148bf7c75eea0cb36d17014a7bc"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da8589f50b728ea4bf22e0632eefa125c8aa9c38ed202a5ee6ca371f05eeb3ff"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f20de711224f2ca2dbb166a8d512f6ff48c9c38cc06b51f796520eb4722cc2ce"}, + {file = "jiter-0.7.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a9803396032117b85ec8cbf008a54590644a062fedd0425cbdb95e4b2b60479"}, + {file = "jiter-0.7.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3d8bae77c82741032e9d89a4026479061aba6e646de3bf5f2fc1ae2bbd9d06e0"}, + {file = "jiter-0.7.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3dc9939e576bbc68c813fc82f6620353ed68c194c7bcf3d58dc822591ec12490"}, + {file = "jiter-0.7.1-cp311-none-win32.whl", hash = "sha256:f7605d24cd6fab156ec89e7924578e21604feee9c4f1e9da34d8b67f63e54892"}, + {file = "jiter-0.7.1-cp311-none-win_amd64.whl", hash = "sha256:f3ea649e7751a1a29ea5ecc03c4ada0a833846c59c6da75d747899f9b48b7282"}, + {file = "jiter-0.7.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ad36a1155cbd92e7a084a568f7dc6023497df781adf2390c345dd77a120905ca"}, + {file = "jiter-0.7.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7ba52e6aaed2dc5c81a3d9b5e4ab95b039c4592c66ac973879ba57c3506492bb"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b7de0b6f6728b678540c7927587e23f715284596724be203af952418acb8a2d"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9463b62bd53c2fb85529c700c6a3beb2ee54fde8bef714b150601616dcb184a6"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:627164ec01d28af56e1f549da84caf0fe06da3880ebc7b7ee1ca15df106ae172"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25d0e5bf64e368b0aa9e0a559c3ab2f9b67e35fe7269e8a0d81f48bbd10e8963"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c244261306f08f8008b3087059601997016549cb8bb23cf4317a4827f07b7d74"}, + {file = "jiter-0.7.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7ded4e4b75b68b843b7cea5cd7c55f738c20e1394c68c2cb10adb655526c5f1b"}, + {file = "jiter-0.7.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:80dae4f1889b9d09e5f4de6b58c490d9c8ce7730e35e0b8643ab62b1538f095c"}, + {file = "jiter-0.7.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5970cf8ec943b51bce7f4b98d2e1ed3ada170c2a789e2db3cb484486591a176a"}, + {file = "jiter-0.7.1-cp312-none-win32.whl", hash = "sha256:701d90220d6ecb3125d46853c8ca8a5bc158de8c49af60fd706475a49fee157e"}, + {file = "jiter-0.7.1-cp312-none-win_amd64.whl", hash = "sha256:7824c3ecf9ecf3321c37f4e4d4411aad49c666ee5bc2a937071bdd80917e4533"}, + {file = "jiter-0.7.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:097676a37778ba3c80cb53f34abd6943ceb0848263c21bf423ae98b090f6c6ba"}, + {file = "jiter-0.7.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3298af506d4271257c0a8f48668b0f47048d69351675dd8500f22420d4eec378"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12fd88cfe6067e2199964839c19bd2b422ca3fd792949b8f44bb8a4e7d21946a"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dacca921efcd21939123c8ea8883a54b9fa7f6545c8019ffcf4f762985b6d0c8"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de3674a5fe1f6713a746d25ad9c32cd32fadc824e64b9d6159b3b34fd9134143"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65df9dbae6d67e0788a05b4bad5706ad40f6f911e0137eb416b9eead6ba6f044"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ba9a358d59a0a55cccaa4957e6ae10b1a25ffdabda863c0343c51817610501d"}, + {file = "jiter-0.7.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:576eb0f0c6207e9ede2b11ec01d9c2182973986514f9c60bc3b3b5d5798c8f50"}, + {file = "jiter-0.7.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e550e29cdf3577d2c970a18f3959e6b8646fd60ef1b0507e5947dc73703b5627"}, + {file = "jiter-0.7.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:81d968dbf3ce0db2e0e4dec6b0a0d5d94f846ee84caf779b07cab49f5325ae43"}, + {file = "jiter-0.7.1-cp313-none-win32.whl", hash = "sha256:f892e547e6e79a1506eb571a676cf2f480a4533675f834e9ae98de84f9b941ac"}, + {file = "jiter-0.7.1-cp313-none-win_amd64.whl", hash = "sha256:0302f0940b1455b2a7fb0409b8d5b31183db70d2b07fd177906d83bf941385d1"}, + {file = "jiter-0.7.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c65a3ce72b679958b79d556473f192a4dfc5895e8cc1030c9f4e434690906076"}, + {file = "jiter-0.7.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e80052d3db39f9bb8eb86d207a1be3d9ecee5e05fdec31380817f9609ad38e60"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70a497859c4f3f7acd71c8bd89a6f9cf753ebacacf5e3e799138b8e1843084e3"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c1288bc22b9e36854a0536ba83666c3b1fb066b811019d7b682c9cf0269cdf9f"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b096ca72dd38ef35675e1d3b01785874315182243ef7aea9752cb62266ad516f"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8dbbd52c50b605af13dbee1a08373c520e6fcc6b5d32f17738875847fea4e2cd"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af29c5c6eb2517e71ffa15c7ae9509fa5e833ec2a99319ac88cc271eca865519"}, + {file = "jiter-0.7.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f114a4df1e40c03c0efbf974b376ed57756a1141eb27d04baee0680c5af3d424"}, + {file = "jiter-0.7.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:191fbaee7cf46a9dd9b817547bf556facde50f83199d07fc48ebeff4082f9df4"}, + {file = "jiter-0.7.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0e2b445e5ee627fb4ee6bbceeb486251e60a0c881a8e12398dfdff47c56f0723"}, + {file = "jiter-0.7.1-cp38-none-win32.whl", hash = "sha256:47ac4c3cf8135c83e64755b7276339b26cd3c7ddadf9e67306ace4832b283edf"}, + {file = "jiter-0.7.1-cp38-none-win_amd64.whl", hash = "sha256:60b49c245cd90cde4794f5c30f123ee06ccf42fb8730a019a2870cd005653ebd"}, + {file = "jiter-0.7.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:8f212eeacc7203256f526f550d105d8efa24605828382cd7d296b703181ff11d"}, + {file = "jiter-0.7.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d9e247079d88c00e75e297e6cb3a18a039ebcd79fefc43be9ba4eb7fb43eb726"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0aacaa56360139c53dcf352992b0331f4057a0373bbffd43f64ba0c32d2d155"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc1b55314ca97dbb6c48d9144323896e9c1a25d41c65bcb9550b3e0c270ca560"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f281aae41b47e90deb70e7386558e877a8e62e1693e0086f37d015fa1c102289"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:93c20d2730a84d43f7c0b6fb2579dc54335db742a59cf9776d0b80e99d587382"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e81ccccd8069110e150613496deafa10da2f6ff322a707cbec2b0d52a87b9671"}, + {file = "jiter-0.7.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0a7d5e85766eff4c9be481d77e2226b4c259999cb6862ccac5ef6621d3c8dcce"}, + {file = "jiter-0.7.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f52ce5799df5b6975439ecb16b1e879d7655e1685b6e3758c9b1b97696313bfb"}, + {file = "jiter-0.7.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e0c91a0304373fdf97d56f88356a010bba442e6d995eb7773cbe32885b71cdd8"}, + {file = "jiter-0.7.1-cp39-none-win32.whl", hash = "sha256:5c08adf93e41ce2755970e8aa95262298afe2bf58897fb9653c47cd93c3c6cdc"}, + {file = "jiter-0.7.1-cp39-none-win_amd64.whl", hash = "sha256:6592f4067c74176e5f369228fb2995ed01400c9e8e1225fb73417183a5e635f0"}, + {file = "jiter-0.7.1.tar.gz", hash = "sha256:448cf4f74f7363c34cdef26214da527e8eeffd88ba06d0b80b485ad0667baf5d"}, ] [[package]] @@ -1863,15 +1849,18 @@ files = [ [[package]] name = "json5" -version = "0.9.25" +version = "0.9.28" description = "A Python implementation of the JSON5 data format." optional = false -python-versions = ">=3.8" +python-versions = ">=3.8.0" files = [ - {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, - {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, + {file = "json5-0.9.28-py3-none-any.whl", hash = "sha256:29c56f1accdd8bc2e037321237662034a7e07921e2b7223281a5ce2c46f0c4df"}, + {file = "json5-0.9.28.tar.gz", hash = "sha256:1f82f36e615bc5b42f1bbd49dbc94b12563c56408c6ffa06414ea310890e9a6e"}, ] +[package.extras] +dev = ["build (==1.2.2.post1)", "coverage (==7.5.3)", "mypy (==1.13.0)", "pip (==24.3.1)", "pylint (==3.2.3)", "ruff (==0.7.3)", "twine (==5.1.1)", "uv (==0.5.1)"] + [[package]] name = "jsonpatch" version = "1.33" @@ -1942,13 +1931,13 @@ referencing = ">=0.31.0" [[package]] name = "julep" -version = "1.35.0" +version = "1.40.0" description = "The official Python library for the julep API" optional = false python-versions = ">=3.8" files = [ - {file = "julep-1.35.0-py3-none-any.whl", hash = "sha256:629a90048b6f11cb725cdf71f587818ecfbc6296aa87bab322b59d45661127d9"}, - {file = "julep-1.35.0.tar.gz", hash = "sha256:7490e630addf1563a123053a7c59e083de815bbdd001386050c0535fc642a633"}, + {file = "julep-1.40.0-py3-none-any.whl", hash = "sha256:64e2adf3629e3813792863b8b0f138563da2de7b902fd017238466759b29039b"}, + {file = "julep-1.40.0.tar.gz", hash = "sha256:3e6eb2a1d0089ce3c390af743b9551882d52e0bcd1b63a5965a85fac33b0341f"}, ] [package.dependencies] @@ -2099,13 +2088,13 @@ test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (> [[package]] name = "jupyterlab" -version = "4.3.0" +version = "4.3.1" description = "JupyterLab computational environment" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.3.0-py3-none-any.whl", hash = "sha256:f67e1095ad61ae04349024f0b40345062ab108a0c6998d9810fec6a3c1a70cd5"}, - {file = "jupyterlab-4.3.0.tar.gz", hash = "sha256:7c6835cbf8df0af0ec8a39332e85ff11693fb9a468205343b4fc0bfbc74817e5"}, + {file = "jupyterlab-4.3.1-py3-none-any.whl", hash = "sha256:2d9a1c305bc748e277819a17a5d5e22452e533e835f4237b2f30f3b0e491e01f"}, + {file = "jupyterlab-4.3.1.tar.gz", hash = "sha256:a4a338327556443521731d82f2a6ccf926df478914ca029616621704d47c3c65"}, ] [package.dependencies] @@ -2179,13 +2168,13 @@ files = [ [[package]] name = "langchain-core" -version = "0.3.15" +version = "0.3.19" description = "Building applications with LLMs through composability" optional = false python-versions = "<4.0,>=3.9" files = [ - {file = "langchain_core-0.3.15-py3-none-any.whl", hash = "sha256:3d4ca6dbb8ed396a6ee061063832a2451b0ce8c345570f7b086ffa7288e4fa29"}, - {file = "langchain_core-0.3.15.tar.gz", hash = "sha256:b1a29787a4ffb7ec2103b4e97d435287201da7809b369740dd1e32f176325aba"}, + {file = "langchain_core-0.3.19-py3-none-any.whl", hash = "sha256:562b7cc3c15dfaa9270cb1496990c1f3b3e0b660c4d6a3236d7f693346f2a96c"}, + {file = "langchain_core-0.3.19.tar.gz", hash = "sha256:126d9e8cadb2a5b8d1793a228c0783a3b608e36064d5a2ef1a4d38d07a344523"}, ] [package.dependencies] @@ -2220,13 +2209,13 @@ test = ["pytest", "pytest-cov"] [[package]] name = "langsmith" -version = "0.1.142" +version = "0.1.143" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.142-py3-none-any.whl", hash = "sha256:f639ca23c9a0bb77af5fb881679b2f66ff1f21f19d0bebf4e51375e7585a8b38"}, - {file = "langsmith-0.1.142.tar.gz", hash = "sha256:f8a84d100f3052233ff0a1d66ae14c5dfc20b7e41a1601de011384f16ee6cb82"}, + {file = "langsmith-0.1.143-py3-none-any.whl", hash = "sha256:ba0d827269e9b03a90fababe41fa3e4e3f833300b95add10184f7e67167dde6f"}, + {file = "langsmith-0.1.143.tar.gz", hash = "sha256:4c5159e5cd84b3f8499433009e72d2076dd2daf6c044ac8a3611b30d0d0161c5"}, ] [package.dependencies] @@ -2305,25 +2294,23 @@ dev = ["Sphinx (>=5.1.1)", "black (==24.8.0)", "build (>=0.10.0)", "coverage[tom [[package]] name = "litellm" -version = "1.52.3" +version = "1.52.10" description = "Library to easily interface with LLM API providers" optional = false -python-versions = "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8" -files = [ - {file = "litellm-1.52.3-py3-none-any.whl", hash = "sha256:fc8d5d53ba184cd570ae50d9acefa53c521225b62244adedea129794e98828b6"}, - {file = "litellm-1.52.3.tar.gz", hash = "sha256:4718235cbd6dea8db99b08e884a07f7ac7fad4a4b12597e20d8ff622295e1e05"}, -] +python-versions = ">=3.8.1,<4.0, !=3.9.7" +files = [] +develop = false [package.dependencies] aiohttp = "*" click = "*" importlib-metadata = ">=6.8.0" -jinja2 = ">=3.1.2,<4.0.0" -jsonschema = ">=4.22.0,<5.0.0" +jinja2 = "^3.1.2" +jsonschema = "^4.22.0" openai = ">=1.54.0" -pydantic = ">=2.0.0,<3.0.0" +pydantic = "^2.0.0" python-dotenv = ">=0.2.0" -requests = ">=2.31.0,<3.0.0" +requests = "^2.31.0" tiktoken = ">=0.7.0" tokenizers = "*" @@ -2331,6 +2318,12 @@ tokenizers = "*" extra-proxy = ["azure-identity (>=1.15.0,<2.0.0)", "azure-keyvault-secrets (>=4.8.0,<5.0.0)", "google-cloud-kms (>=2.21.3,<3.0.0)", "prisma (==0.11.0)", "resend (>=0.8.0,<0.9.0)"] proxy = ["PyJWT (>=2.8.0,<3.0.0)", "apscheduler (>=3.10.4,<4.0.0)", "backoff", "cryptography (>=42.0.5,<43.0.0)", "fastapi (>=0.111.0,<0.112.0)", "fastapi-sso (>=0.10.0,<0.11.0)", "gunicorn (>=22.0.0,<23.0.0)", "orjson (>=3.9.7,<4.0.0)", "pynacl (>=1.5.0,<2.0.0)", "python-multipart (>=0.0.9,<0.0.10)", "pyyaml (>=6.0.1,<7.0.0)", "rq", "uvicorn (>=0.22.0,<0.23.0)"] +[package.source] +type = "git" +url = "https://github.com/julep-ai/litellm.git" +reference = "fix_anthropic_tool_image_content" +resolved_reference = "45a0d77a1446e0eb3feeebbf717ef43bfd0e7f7d" + [[package]] name = "lz4" version = "4.3.3" @@ -3110,13 +3103,13 @@ files = [ [[package]] name = "openai" -version = "1.54.3" +version = "1.54.4" description = "The official Python library for the openai API" optional = false python-versions = ">=3.8" files = [ - {file = "openai-1.54.3-py3-none-any.whl", hash = "sha256:f18dbaf09c50d70c4185b892a2a553f80681d1d866323a2da7f7be2f688615d5"}, - {file = "openai-1.54.3.tar.gz", hash = "sha256:7511b74eeb894ac0b0253dc71f087a15d2e4d71d22d0088767205143d880cca6"}, + {file = "openai-1.54.4-py3-none-any.whl", hash = "sha256:0d95cef99346bf9b6d7fbf57faf61a673924c3e34fa8af84c9ffe04660673a7e"}, + {file = "openai-1.54.4.tar.gz", hash = "sha256:50f3656e45401c54e973fa05dc29f3f0b0d19348d685b2f7ddb4d92bf7b1b6bf"}, ] [package.dependencies] @@ -3908,13 +3901,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyjwt" -version = "2.9.0" +version = "2.10.0" description = "JSON Web Token implementation in Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "PyJWT-2.9.0-py3-none-any.whl", hash = "sha256:3b02fb0f44517787776cf48f2ae25d8e14f300e6d7545a4315cee571a415e850"}, - {file = "pyjwt-2.9.0.tar.gz", hash = "sha256:7e1e5b56cc735432a7369cbfa0efe50fa113ebecdc04ae6922deba8b84582d0c"}, + {file = "PyJWT-2.10.0-py3-none-any.whl", hash = "sha256:543b77207db656de204372350926bed5a86201c4cbff159f623f79c7bb487a15"}, + {file = "pyjwt-2.10.0.tar.gz", hash = "sha256:7628a7eb7938959ac1b26e819a1df0fd3259505627b575e4bad6d08f76db695c"}, ] [package.extras] @@ -4872,23 +4865,23 @@ tornado = ["tornado (>=6)"] [[package]] name = "setuptools" -version = "75.3.0" +version = "75.5.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "setuptools-75.3.0-py3-none-any.whl", hash = "sha256:f2504966861356aa38616760c0f66568e535562374995367b4e69c7143cf6bcd"}, - {file = "setuptools-75.3.0.tar.gz", hash = "sha256:fba5dd4d766e97be1b1681d98712680ae8f2f26d7881245f2ce9e40714f1a686"}, + {file = "setuptools-75.5.0-py3-none-any.whl", hash = "sha256:87cb777c3b96d638ca02031192d40390e0ad97737e27b6b4fa831bea86f2f829"}, + {file = "setuptools-75.5.0.tar.gz", hash = "sha256:5c4ccb41111392671f02bb5f8436dfc5a9a7185e80500531b133f5775c4163ef"}, ] [package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.7.0)"] +core = ["importlib-metadata (>=6)", "jaraco.collections", "jaraco.functools (>=4)", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24.2)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.12.*)", "pytest-mypy"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test (>=5.5)", "packaging (>=24.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (>=1.12,<1.14)", "pytest-mypy"] [[package]] name = "shellingham" @@ -5663,13 +5656,13 @@ files = [ [[package]] name = "tomli" -version = "2.0.2" +version = "2.1.0" description = "A lil' TOML parser" optional = false python-versions = ">=3.8" files = [ - {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, - {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, + {file = "tomli-2.1.0-py3-none-any.whl", hash = "sha256:a5c57c3d1c56f5ccdf89f6523458f60ef716e210fc47c4cfb188c5ba473e0391"}, + {file = "tomli-2.1.0.tar.gz", hash = "sha256:3f646cae2aec94e17d04973e4249548320197cfabdf130015d023de4b74d8ab8"}, ] [[package]] @@ -5970,19 +5963,15 @@ wasabi = ">=0.9.1,<1.2.0" [[package]] name = "webcolors" -version = "24.8.0" +version = "24.11.1" description = "A library for working with the color formats defined by HTML and CSS." optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a"}, - {file = "webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d"}, + {file = "webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9"}, + {file = "webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6"}, ] -[package.extras] -docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["coverage[toml]"] - [[package]] name = "webencodings" version = "0.5.1" @@ -6234,93 +6223,93 @@ files = [ [[package]] name = "yarl" -version = "1.17.1" +version = "1.17.2" description = "Yet another URL library" optional = false python-versions = ">=3.9" files = [ - {file = "yarl-1.17.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0b1794853124e2f663f0ea54efb0340b457f08d40a1cef78edfa086576179c91"}, - {file = "yarl-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fbea1751729afe607d84acfd01efd95e3b31db148a181a441984ce9b3d3469da"}, - {file = "yarl-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8ee427208c675f1b6e344a1f89376a9613fc30b52646a04ac0c1f6587c7e46ec"}, - {file = "yarl-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b74ff4767d3ef47ffe0cd1d89379dc4d828d4873e5528976ced3b44fe5b0a21"}, - {file = "yarl-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:62a91aefff3d11bf60e5956d340eb507a983a7ec802b19072bb989ce120cd948"}, - {file = "yarl-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:846dd2e1243407133d3195d2d7e4ceefcaa5f5bf7278f0a9bda00967e6326b04"}, - {file = "yarl-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e844be8d536afa129366d9af76ed7cb8dfefec99f5f1c9e4f8ae542279a6dc3"}, - {file = "yarl-1.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc7c92c1baa629cb03ecb0c3d12564f172218fb1739f54bf5f3881844daadc6d"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ae3476e934b9d714aa8000d2e4c01eb2590eee10b9d8cd03e7983ad65dfbfcba"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:c7e177c619342e407415d4f35dec63d2d134d951e24b5166afcdfd1362828e17"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:64cc6e97f14cf8a275d79c5002281f3040c12e2e4220623b5759ea7f9868d6a5"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:84c063af19ef5130084db70ada40ce63a84f6c1ef4d3dbc34e5e8c4febb20822"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:482c122b72e3c5ec98f11457aeb436ae4aecca75de19b3d1de7cf88bc40db82f"}, - {file = "yarl-1.17.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:380e6c38ef692b8fd5a0f6d1fa8774d81ebc08cfbd624b1bca62a4d4af2f9931"}, - {file = "yarl-1.17.1-cp310-cp310-win32.whl", hash = "sha256:16bca6678a83657dd48df84b51bd56a6c6bd401853aef6d09dc2506a78484c7b"}, - {file = "yarl-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:561c87fea99545ef7d692403c110b2f99dced6dff93056d6e04384ad3bc46243"}, - {file = "yarl-1.17.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:cbad927ea8ed814622305d842c93412cb47bd39a496ed0f96bfd42b922b4a217"}, - {file = "yarl-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:fca4b4307ebe9c3ec77a084da3a9d1999d164693d16492ca2b64594340999988"}, - {file = "yarl-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ff5c6771c7e3511a06555afa317879b7db8d640137ba55d6ab0d0c50425cab75"}, - {file = "yarl-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b29beab10211a746f9846baa39275e80034e065460d99eb51e45c9a9495bcca"}, - {file = "yarl-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a52a1ffdd824fb1835272e125385c32fd8b17fbdefeedcb4d543cc23b332d74"}, - {file = "yarl-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:58c8e9620eb82a189c6c40cb6b59b4e35b2ee68b1f2afa6597732a2b467d7e8f"}, - {file = "yarl-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d216e5d9b8749563c7f2c6f7a0831057ec844c68b4c11cb10fc62d4fd373c26d"}, - {file = "yarl-1.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:881764d610e3269964fc4bb3c19bb6fce55422828e152b885609ec176b41cf11"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8c79e9d7e3d8a32d4824250a9c6401194fb4c2ad9a0cec8f6a96e09a582c2cc0"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:299f11b44d8d3a588234adbe01112126010bd96d9139c3ba7b3badd9829261c3"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:cc7d768260f4ba4ea01741c1b5fe3d3a6c70eb91c87f4c8761bbcce5181beafe"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:de599af166970d6a61accde358ec9ded821234cbbc8c6413acfec06056b8e860"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2b24ec55fad43e476905eceaf14f41f6478780b870eda5d08b4d6de9a60b65b4"}, - {file = "yarl-1.17.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9fb815155aac6bfa8d86184079652c9715c812d506b22cfa369196ef4e99d1b4"}, - {file = "yarl-1.17.1-cp311-cp311-win32.whl", hash = "sha256:7615058aabad54416ddac99ade09a5510cf77039a3b903e94e8922f25ed203d7"}, - {file = "yarl-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:14bc88baa44e1f84164a392827b5defb4fa8e56b93fecac3d15315e7c8e5d8b3"}, - {file = "yarl-1.17.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:327828786da2006085a4d1feb2594de6f6d26f8af48b81eb1ae950c788d97f61"}, - {file = "yarl-1.17.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cc353841428d56b683a123a813e6a686e07026d6b1c5757970a877195f880c2d"}, - {file = "yarl-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c73df5b6e8fabe2ddb74876fb82d9dd44cbace0ca12e8861ce9155ad3c886139"}, - {file = "yarl-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bdff5e0995522706c53078f531fb586f56de9c4c81c243865dd5c66c132c3b5"}, - {file = "yarl-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:06157fb3c58f2736a5e47c8fcbe1afc8b5de6fb28b14d25574af9e62150fcaac"}, - {file = "yarl-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1654ec814b18be1af2c857aa9000de7a601400bd4c9ca24629b18486c2e35463"}, - {file = "yarl-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f6595c852ca544aaeeb32d357e62c9c780eac69dcd34e40cae7b55bc4fb1147"}, - {file = "yarl-1.17.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:459e81c2fb920b5f5df744262d1498ec2c8081acdcfe18181da44c50f51312f7"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7e48cdb8226644e2fbd0bdb0a0f87906a3db07087f4de77a1b1b1ccfd9e93685"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:d9b6b28a57feb51605d6ae5e61a9044a31742db557a3b851a74c13bc61de5172"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e594b22688d5747b06e957f1ef822060cb5cb35b493066e33ceac0cf882188b7"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5f236cb5999ccd23a0ab1bd219cfe0ee3e1c1b65aaf6dd3320e972f7ec3a39da"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a2a64e62c7a0edd07c1c917b0586655f3362d2c2d37d474db1a509efb96fea1c"}, - {file = "yarl-1.17.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d0eea830b591dbc68e030c86a9569826145df485b2b4554874b07fea1275a199"}, - {file = "yarl-1.17.1-cp312-cp312-win32.whl", hash = "sha256:46ddf6e0b975cd680eb83318aa1d321cb2bf8d288d50f1754526230fcf59ba96"}, - {file = "yarl-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:117ed8b3732528a1e41af3aa6d4e08483c2f0f2e3d3d7dca7cf538b3516d93df"}, - {file = "yarl-1.17.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5d1d42556b063d579cae59e37a38c61f4402b47d70c29f0ef15cee1acaa64488"}, - {file = "yarl-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c0167540094838ee9093ef6cc2c69d0074bbf84a432b4995835e8e5a0d984374"}, - {file = "yarl-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2f0a6423295a0d282d00e8701fe763eeefba8037e984ad5de44aa349002562ac"}, - {file = "yarl-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5b078134f48552c4d9527db2f7da0b5359abd49393cdf9794017baec7506170"}, - {file = "yarl-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d401f07261dc5aa36c2e4efc308548f6ae943bfff20fcadb0a07517a26b196d8"}, - {file = "yarl-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5f1ac7359e17efe0b6e5fec21de34145caef22b260e978336f325d5c84e6938"}, - {file = "yarl-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f63d176a81555984e91f2c84c2a574a61cab7111cc907e176f0f01538e9ff6e"}, - {file = "yarl-1.17.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e275792097c9f7e80741c36de3b61917aebecc08a67ae62899b074566ff8556"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:81713b70bea5c1386dc2f32a8f0dab4148a2928c7495c808c541ee0aae614d67"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:aa46dce75078fceaf7cecac5817422febb4355fbdda440db55206e3bd288cfb8"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:1ce36ded585f45b1e9bb36d0ae94765c6608b43bd2e7f5f88079f7a85c61a4d3"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:2d374d70fdc36f5863b84e54775452f68639bc862918602d028f89310a034ab0"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:2d9f0606baaec5dd54cb99667fcf85183a7477f3766fbddbe3f385e7fc253299"}, - {file = "yarl-1.17.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b0341e6d9a0c0e3cdc65857ef518bb05b410dbd70d749a0d33ac0f39e81a4258"}, - {file = "yarl-1.17.1-cp313-cp313-win32.whl", hash = "sha256:2e7ba4c9377e48fb7b20dedbd473cbcbc13e72e1826917c185157a137dac9df2"}, - {file = "yarl-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:949681f68e0e3c25377462be4b658500e85ca24323d9619fdc41f68d46a1ffda"}, - {file = "yarl-1.17.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8994b29c462de9a8fce2d591028b986dbbe1b32f3ad600b2d3e1c482c93abad6"}, - {file = "yarl-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f9cbfbc5faca235fbdf531b93aa0f9f005ec7d267d9d738761a4d42b744ea159"}, - {file = "yarl-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b40d1bf6e6f74f7c0a567a9e5e778bbd4699d1d3d2c0fe46f4b717eef9e96b95"}, - {file = "yarl-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5efe0661b9fcd6246f27957f6ae1c0eb29bc60552820f01e970b4996e016004"}, - {file = "yarl-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b5c4804e4039f487e942c13381e6c27b4b4e66066d94ef1fae3f6ba8b953f383"}, - {file = "yarl-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5d6a6c9602fd4598fa07e0389e19fe199ae96449008d8304bf5d47cb745462e"}, - {file = "yarl-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4c9156c4d1eb490fe374fb294deeb7bc7eaccda50e23775b2354b6a6739934"}, - {file = "yarl-1.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6324274b4e0e2fa1b3eccb25997b1c9ed134ff61d296448ab8269f5ac068c4c"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d8a8b74d843c2638f3864a17d97a4acda58e40d3e44b6303b8cc3d3c44ae2d29"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:7fac95714b09da9278a0b52e492466f773cfe37651cf467a83a1b659be24bf71"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:c180ac742a083e109c1a18151f4dd8675f32679985a1c750d2ff806796165b55"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:578d00c9b7fccfa1745a44f4eddfdc99d723d157dad26764538fbdda37209857"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:1a3b91c44efa29e6c8ef8a9a2b583347998e2ba52c5d8280dbd5919c02dfc3b5"}, - {file = "yarl-1.17.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a7ac5b4984c468ce4f4a553df281450df0a34aefae02e58d77a0847be8d1e11f"}, - {file = "yarl-1.17.1-cp39-cp39-win32.whl", hash = "sha256:7294e38f9aa2e9f05f765b28ffdc5d81378508ce6dadbe93f6d464a8c9594473"}, - {file = "yarl-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:eb6dce402734575e1a8cc0bb1509afca508a400a57ce13d306ea2c663bad1138"}, - {file = "yarl-1.17.1-py3-none-any.whl", hash = "sha256:f1790a4b1e8e8e028c391175433b9c8122c39b46e1663228158e61e6f915bf06"}, - {file = "yarl-1.17.1.tar.gz", hash = "sha256:067a63fcfda82da6b198fa73079b1ca40b7c9b7994995b6ee38acda728b64d47"}, + {file = "yarl-1.17.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:93771146ef048b34201bfa382c2bf74c524980870bb278e6df515efaf93699ff"}, + {file = "yarl-1.17.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8281db240a1616af2f9c5f71d355057e73a1409c4648c8949901396dc0a3c151"}, + {file = "yarl-1.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:170ed4971bf9058582b01a8338605f4d8c849bd88834061e60e83b52d0c76870"}, + {file = "yarl-1.17.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc61b005f6521fcc00ca0d1243559a5850b9dd1e1fe07b891410ee8fe192d0c0"}, + {file = "yarl-1.17.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:871e1b47eec7b6df76b23c642a81db5dd6536cbef26b7e80e7c56c2fd371382e"}, + {file = "yarl-1.17.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3a58a2f2ca7aaf22b265388d40232f453f67a6def7355a840b98c2d547bd037f"}, + {file = "yarl-1.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:736bb076f7299c5c55dfef3eb9e96071a795cb08052822c2bb349b06f4cb2e0a"}, + {file = "yarl-1.17.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8fd51299e21da709eabcd5b2dd60e39090804431292daacbee8d3dabe39a6bc0"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:358dc7ddf25e79e1cc8ee16d970c23faee84d532b873519c5036dbb858965795"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:50d866f7b1a3f16f98603e095f24c0eeba25eb508c85a2c5939c8b3870ba2df8"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:8b9c4643e7d843a0dca9cd9d610a0876e90a1b2cbc4c5ba7930a0d90baf6903f"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d63123bfd0dce5f91101e77c8a5427c3872501acece8c90df457b486bc1acd47"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:4e76381be3d8ff96a4e6c77815653063e87555981329cf8f85e5be5abf449021"}, + {file = "yarl-1.17.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:734144cd2bd633a1516948e477ff6c835041c0536cef1d5b9a823ae29899665b"}, + {file = "yarl-1.17.2-cp310-cp310-win32.whl", hash = "sha256:26bfb6226e0c157af5da16d2d62258f1ac578d2899130a50433ffee4a5dfa673"}, + {file = "yarl-1.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:76499469dcc24759399accd85ec27f237d52dec300daaca46a5352fcbebb1071"}, + {file = "yarl-1.17.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:792155279dc093839e43f85ff7b9b6493a8eaa0af1f94f1f9c6e8f4de8c63500"}, + {file = "yarl-1.17.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:38bc4ed5cae853409cb193c87c86cd0bc8d3a70fd2268a9807217b9176093ac6"}, + {file = "yarl-1.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4a8c83f6fcdc327783bdc737e8e45b2e909b7bd108c4da1892d3bc59c04a6d84"}, + {file = "yarl-1.17.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c6d5fed96f0646bfdf698b0a1cebf32b8aae6892d1bec0c5d2d6e2df44e1e2d"}, + {file = "yarl-1.17.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:782ca9c58f5c491c7afa55518542b2b005caedaf4685ec814fadfcee51f02493"}, + {file = "yarl-1.17.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ff6af03cac0d1a4c3c19e5dcc4c05252411bf44ccaa2485e20d0a7c77892ab6e"}, + {file = "yarl-1.17.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a3f47930fbbed0f6377639503848134c4aa25426b08778d641491131351c2c8"}, + {file = "yarl-1.17.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1fa68a3c921365c5745b4bd3af6221ae1f0ea1bf04b69e94eda60e57958907f"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:187df91395c11e9f9dc69b38d12406df85aa5865f1766a47907b1cc9855b6303"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:93d1c8cc5bf5df401015c5e2a3ce75a5254a9839e5039c881365d2a9dcfc6dc2"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:11d86c6145ac5c706c53d484784cf504d7d10fa407cb73b9d20f09ff986059ef"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:c42774d1d1508ec48c3ed29e7b110e33f5e74a20957ea16197dbcce8be6b52ba"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:0c8e589379ef0407b10bed16cc26e7392ef8f86961a706ade0a22309a45414d7"}, + {file = "yarl-1.17.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1056cadd5e850a1c026f28e0704ab0a94daaa8f887ece8dfed30f88befb87bb0"}, + {file = "yarl-1.17.2-cp311-cp311-win32.whl", hash = "sha256:be4c7b1c49d9917c6e95258d3d07f43cfba2c69a6929816e77daf322aaba6628"}, + {file = "yarl-1.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:ac8eda86cc75859093e9ce390d423aba968f50cf0e481e6c7d7d63f90bae5c9c"}, + {file = "yarl-1.17.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:dd90238d3a77a0e07d4d6ffdebc0c21a9787c5953a508a2231b5f191455f31e9"}, + {file = "yarl-1.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c74f0b0472ac40b04e6d28532f55cac8090e34c3e81f118d12843e6df14d0909"}, + {file = "yarl-1.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4d486ddcaca8c68455aa01cf53d28d413fb41a35afc9f6594a730c9779545876"}, + {file = "yarl-1.17.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f25b7e93f5414b9a983e1a6c1820142c13e1782cc9ed354c25e933aebe97fcf2"}, + {file = "yarl-1.17.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3a0baff7827a632204060f48dca9e63fbd6a5a0b8790c1a2adfb25dc2c9c0d50"}, + {file = "yarl-1.17.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:460024cacfc3246cc4d9f47a7fc860e4fcea7d1dc651e1256510d8c3c9c7cde0"}, + {file = "yarl-1.17.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5870d620b23b956f72bafed6a0ba9a62edb5f2ef78a8849b7615bd9433384171"}, + {file = "yarl-1.17.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2941756754a10e799e5b87e2319bbec481ed0957421fba0e7b9fb1c11e40509f"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9611b83810a74a46be88847e0ea616794c406dbcb4e25405e52bff8f4bee2d0a"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:cd7e35818d2328b679a13268d9ea505c85cd773572ebb7a0da7ccbca77b6a52e"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:6b981316fcd940f085f646b822c2ff2b8b813cbd61281acad229ea3cbaabeb6b"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:688058e89f512fb7541cb85c2f149c292d3fa22f981d5a5453b40c5da49eb9e8"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:56afb44a12b0864d17b597210d63a5b88915d680f6484d8d202ed68ade38673d"}, + {file = "yarl-1.17.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:17931dfbb84ae18b287279c1f92b76a3abcd9a49cd69b92e946035cff06bcd20"}, + {file = "yarl-1.17.2-cp312-cp312-win32.whl", hash = "sha256:ff8d95e06546c3a8c188f68040e9d0360feb67ba8498baf018918f669f7bc39b"}, + {file = "yarl-1.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:4c840cc11163d3c01a9d8aad227683c48cd3e5be5a785921bcc2a8b4b758c4f3"}, + {file = "yarl-1.17.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:3294f787a437cb5d81846de3a6697f0c35ecff37a932d73b1fe62490bef69211"}, + {file = "yarl-1.17.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f1e7fedb09c059efee2533119666ca7e1a2610072076926fa028c2ba5dfeb78c"}, + {file = "yarl-1.17.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:da9d3061e61e5ae3f753654813bc1cd1c70e02fb72cf871bd6daf78443e9e2b1"}, + {file = "yarl-1.17.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91c012dceadc695ccf69301bfdccd1fc4472ad714fe2dd3c5ab4d2046afddf29"}, + {file = "yarl-1.17.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f11fd61d72d93ac23718d393d2a64469af40be2116b24da0a4ca6922df26807e"}, + {file = "yarl-1.17.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:46c465ad06971abcf46dd532f77560181387b4eea59084434bdff97524444032"}, + {file = "yarl-1.17.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef6eee1a61638d29cd7c85f7fd3ac7b22b4c0fabc8fd00a712b727a3e73b0685"}, + {file = "yarl-1.17.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4434b739a8a101a837caeaa0137e0e38cb4ea561f39cb8960f3b1e7f4967a3fc"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:752485cbbb50c1e20908450ff4f94217acba9358ebdce0d8106510859d6eb19a"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:17791acaa0c0f89323c57da7b9a79f2174e26d5debbc8c02d84ebd80c2b7bff8"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:5c6ea72fe619fee5e6b5d4040a451d45d8175f560b11b3d3e044cd24b2720526"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:db5ac3871ed76340210fe028f535392f097fb31b875354bcb69162bba2632ef4"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:7a1606ba68e311576bcb1672b2a1543417e7e0aa4c85e9e718ba6466952476c0"}, + {file = "yarl-1.17.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9bc27dd5cfdbe3dc7f381b05e6260ca6da41931a6e582267d5ca540270afeeb2"}, + {file = "yarl-1.17.2-cp313-cp313-win32.whl", hash = "sha256:52492b87d5877ec405542f43cd3da80bdcb2d0c2fbc73236526e5f2c28e6db28"}, + {file = "yarl-1.17.2-cp313-cp313-win_amd64.whl", hash = "sha256:8e1bf59e035534ba4077f5361d8d5d9194149f9ed4f823d1ee29ef3e8964ace3"}, + {file = "yarl-1.17.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c556fbc6820b6e2cda1ca675c5fa5589cf188f8da6b33e9fc05b002e603e44fa"}, + {file = "yarl-1.17.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f2f44a4247461965fed18b2573f3a9eb5e2c3cad225201ee858726cde610daca"}, + {file = "yarl-1.17.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3a3ede8c248f36b60227eb777eac1dbc2f1022dc4d741b177c4379ca8e75571a"}, + {file = "yarl-1.17.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2654caaf5584449d49c94a6b382b3cb4a246c090e72453493ea168b931206a4d"}, + {file = "yarl-1.17.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0d41c684f286ce41fa05ab6af70f32d6da1b6f0457459a56cf9e393c1c0b2217"}, + {file = "yarl-1.17.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2270d590997445a0dc29afa92e5534bfea76ba3aea026289e811bf9ed4b65a7f"}, + {file = "yarl-1.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18662443c6c3707e2fc7fad184b4dc32dd428710bbe72e1bce7fe1988d4aa654"}, + {file = "yarl-1.17.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:75ac158560dec3ed72f6d604c81090ec44529cfb8169b05ae6fcb3e986b325d9"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1fee66b32e79264f428dc8da18396ad59cc48eef3c9c13844adec890cd339db5"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:585ce7cd97be8f538345de47b279b879e091c8b86d9dbc6d98a96a7ad78876a3"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:c019abc2eca67dfa4d8fb72ba924871d764ec3c92b86d5b53b405ad3d6aa56b0"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c6e659b9a24d145e271c2faf3fa6dd1fcb3e5d3f4e17273d9e0350b6ab0fe6e2"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:d17832ba39374134c10e82d137e372b5f7478c4cceeb19d02ae3e3d1daed8721"}, + {file = "yarl-1.17.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:bc3003710e335e3f842ae3fd78efa55f11a863a89a72e9a07da214db3bf7e1f8"}, + {file = "yarl-1.17.2-cp39-cp39-win32.whl", hash = "sha256:f5ffc6b7ace5b22d9e73b2a4c7305740a339fbd55301d52735f73e21d9eb3130"}, + {file = "yarl-1.17.2-cp39-cp39-win_amd64.whl", hash = "sha256:48e424347a45568413deec6f6ee2d720de2cc0385019bedf44cd93e8638aa0ed"}, + {file = "yarl-1.17.2-py3-none-any.whl", hash = "sha256:dd7abf4f717e33b7487121faf23560b3a50924f80e4bef62b22dab441ded8f3b"}, + {file = "yarl-1.17.2.tar.gz", hash = "sha256:753eaaa0c7195244c84b5cc159dc8204b7fd99f716f11198f999f2332a86b178"}, ] [package.dependencies] @@ -6330,13 +6319,13 @@ propcache = ">=0.2.0" [[package]] name = "zipp" -version = "3.20.2" +version = "3.21.0" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, - {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, + {file = "zipp-3.21.0-py3-none-any.whl", hash = "sha256:ac1bbe05fd2991f160ebce24ffbac5f6d11d83dc90891255885223d42b3cd931"}, + {file = "zipp-3.21.0.tar.gz", hash = "sha256:2c9958f6430a2040341a52eb608ed6dd93ef4392e02ffe219417c1b28b5dd1f4"}, ] [package.extras] @@ -6350,4 +6339,4 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = ">=3.12,<3.13" -content-hash = "32c25f376e0befcd3a02f7b983f26aa91f2e40c7ac8d993251fc8e7c77e1a60b" +content-hash = "b285c4b4ba58272c3c3e6a8cb57538b37b5367a69c711275f1be3ba1e55a7d5a" diff --git a/agents-api/pyproject.toml b/agents-api/pyproject.toml index 9ce019e0e..310570f23 100644 --- a/agents-api/pyproject.toml +++ b/agents-api/pyproject.toml @@ -23,7 +23,6 @@ arrow = "^1.3.0" jinja2 = "^3.1.4" jinja2schema = "^0.1.4" jsonschema = "^4.21.1" -litellm = "^1.52.3" numpy = ">=2.0.0,<2.1.0" tiktoken = "^0.7.0" tenacity = "^9.0.0" @@ -51,6 +50,7 @@ uvloop = "^0.21.0" anthropic = "^0.37.1" simsimd = "^5.9.4" langchain-core = "^0.3.14" +litellm = {git = "https://github.com/julep-ai/litellm.git", rev = "fix_anthropic_tool_image_content"} [tool.poetry.group.dev.dependencies] ipython = "^8.26.0" ruff = "^0.5.5" diff --git a/llm-proxy/docker-compose.yml b/llm-proxy/docker-compose.yml index 0b9800b02..6b7026e73 100644 --- a/llm-proxy/docker-compose.yml +++ b/llm-proxy/docker-compose.yml @@ -1,7 +1,7 @@ name: julep-llm-proxy x--litellm-base: &litellm-base - image: ghcr.io/berriai/litellm-database:main-v1.52.0-stable + image: julepai/litellm-database:fix_anthropic_tool_image_content restart: unless-stopped hostname: litellm ports: From 1fd3f8c52e6fe682ad2e5d1248d833dba96c74ee Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Mon, 18 Nov 2024 11:29:27 +0000 Subject: [PATCH 16/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/routers/sessions/chat.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 0a8cd9a8b..4c48fc44d 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -235,7 +235,9 @@ async def chat( is_claude_model = settings["model"].lower().startswith("claude-3.5") # Format tools for litellm - formatted_tools = tools if is_claude_model else [format_tool(tool) for tool in tools] + formatted_tools = ( + tools if is_claude_model else [format_tool(tool) for tool in tools] + ) # FIXME: Truncate chat messages in the chat context # SCRUM-7 From 97cde47a743d7b2b7fe0632abd3b4be0d7090fe4 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 12:45:30 +0300 Subject: [PATCH 17/28] Fix chat endpoint for computer tool --- .../agents_api/routers/sessions/chat.py | 147 ++++-------------- 1 file changed, 26 insertions(+), 121 deletions(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 0a8cd9a8b..f7bd28e5c 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -34,120 +34,6 @@ COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" - -async def request_anthropic( - messages: list[dict], formatted_tools: list[dict], settings: dict -) -> ModelResponse: - # Use Anthropic API directly - client = AsyncAnthropic(api_key=anthropic_api_key) - - # Filter tools for specific types - filtered_tools = [ - tool - for tool in formatted_tools - if tool["type"] - in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - ] - - # Format messages for Claude - claude_messages = [] - for msg in messages: - # Skip messages that are not assistant or user - if msg["role"] not in ["assistant", "user"]: - continue - - # FIXME: return the tool call ids (save assistant message in entries as json dump) - # Transform the message content and tool calls - if msg["role"] == "assistant": - transformed_content = [ - { - "text": "Let's do this action" - if msg["content"] == [] - else msg["content"], - "type": "text", - } - ] - transformed_content.extend( - { - "id": f"{tool_call['id']}", - "input": json.loads(tool_call["function"]["arguments"]), - "name": tool_call["function"]["name"], - "type": "tool_use", - } - for tool_call in msg.get("tool_calls", []) - ) - claude_message = { - "role": msg["role"], - "content": transformed_content, - } - elif msg["role"] == "user": - try: - transformed_content = json.loads(msg["content"]) - except Exception: - transformed_content = msg["content"] - claude_message = {"role": msg["role"], "content": transformed_content} - - claude_messages.append(claude_message) - # Call Claude API - claude_response: BetaMessage = await client.beta.messages.create( - model="claude-3-5-sonnet-20241022", - messages=claude_messages, - tools=filtered_tools, - max_tokens=settings.get("max_tokens", 1024), - betas=[COMPUTER_USE_BETA_FLAG], - ) - # Convert Claude response to litellm format - text_block = next( - (block for block in claude_response.content if block.type == "text"), - None, - ) - - if claude_response.stop_reason == "tool_use": - choice = Choices( - message=Message( - role="assistant", - content=text_block.text if text_block else None, - tool_calls=[ - ChatCompletionMessageToolCall( - type="function", - function=Function( - name=block.name, - arguments=block.input, - ), - ) - for block in claude_response.content - if block.type == "tool_use" - ], - ), - finish_reason="tool_calls", - ) - else: - assert ( - text_block - ), "Claude should always return a text block for stop_reason=stop" - choice = Choices( - message=Message( - role="assistant", - content=text_block.text, - ), - finish_reason="stop", - ) - - model_response = ModelResponse( - id=claude_response.id, - choices=[choice], - created=int(datetime.now().timestamp()), - model=claude_response.model, - object="text_completion", - usage={ - "total_tokens": claude_response.usage.input_tokens - + claude_response.usage.output_tokens - }, - ) - - return model_response - - @router.post( "/sessions/{session_id}/chat", status_code=HTTP_201_CREATED, @@ -253,13 +139,32 @@ async def chat( for m in messages ] - has_special_tools = any( - tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - for tool in formatted_tools - ) - print("*" * 100) - print("modell", settings["model"]) - print("*" * 100) + # has_special_tools = any( + # tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] + # for tool in formatted_tools + # ) + + + # FIXME: Hack to make the computer use tools compatible with litellm + # Issue was: litellm expects type to be `computer_20241022` and spec to be + # `function` (see: https://docs.litellm.ai/docs/providers/anthropic#computer-tools) + # but we don't allow that (spec should match type). + for i, tool in enumerate(formatted_tools): + if tool.type == "computer_20241022": + function = tool.computer_20241022 + tool = { + "type": tool.type, + "function": { + "name": tool.name, + "parameters": { + k: v + for k, v in function.model_dump().items() + if k not in ["name", "type"] + }, + }, + } + formatted_tools[i] = tool + # formatted_tools = None # Use litellm for other models From a891d2844f44503306e6df5057beb34994d5fe39 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 09:46:33 +0000 Subject: [PATCH 18/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/routers/sessions/chat.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 3a61757dd..4df113c9f 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -34,6 +34,7 @@ COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" + @router.post( "/sessions/{session_id}/chat", status_code=HTTP_201_CREATED, @@ -146,9 +147,8 @@ async def chat( # for tool in formatted_tools # ) - # FIXME: Hack to make the computer use tools compatible with litellm - # Issue was: litellm expects type to be `computer_20241022` and spec to be + # Issue was: litellm expects type to be `computer_20241022` and spec to be # `function` (see: https://docs.litellm.ai/docs/providers/anthropic#computer-tools) # but we don't allow that (spec should match type). for i, tool in enumerate(formatted_tools): @@ -167,7 +167,6 @@ async def chat( } formatted_tools[i] = tool - # formatted_tools = None # Use litellm for other models model_response = await litellm.acompletion( From d3c5956b65890af7034b6d4ac052c1994479eb7b Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 13:09:25 +0300 Subject: [PATCH 19/28] Fix background tasks in execute system --- .../agents_api/activities/execute_system.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index ea08e017e..9dcc24780 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -65,12 +65,16 @@ async def execute_system( # Handle special cases for doc operations if system.operation == "create" and system.subresource == "doc": arguments["x_developer_id"] = arguments.pop("developer_id") - return await handler( + bg_runner = BackgroundTasks() + res = await handler( data=CreateDocRequest(**arguments.pop("data")), - background_tasks=BackgroundTasks(), + background_tasks=bg_runner, **arguments, ) + await bg_runner() + return res + # Handle search operations if system.operation == "search" and system.subresource == "doc": arguments["x_developer_id"] = arguments.pop("developer_id") @@ -83,14 +87,18 @@ async def execute_system( session_id = arguments.pop("session_id") x_custom_api_key = arguments.pop("x_custom_api_key", None) chat_input = ChatInput(**arguments) - return await handler( + bg_runner = BackgroundTasks() + res = await handler( developer=developer, session_id=session_id, - background_tasks=BackgroundTasks(), + background_tasks=bg_runner, x_custom_api_key=x_custom_api_key, chat_input=chat_input, ) + await bg_runner() + return res + if system.operation == "create" and system.resource == "session": developer_id = arguments.pop("developer_id") session_id = arguments.pop("session_id", None) From 22086bcf9390be7f21cba19cdb5bc1e689cac307 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 15:16:44 +0300 Subject: [PATCH 20/28] fix(agents-api): Make SystemDef a RemoteObject in task_execution --- .../agents_api/activities/execute_system.py | 54 +++++++++++-------- .../agents_api/autogen/openapi_model.py | 5 ++ .../workflows/task_execution/__init__.py | 2 +- 3 files changed, 37 insertions(+), 24 deletions(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index 9dcc24780..a8ac893ab 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -7,15 +7,16 @@ from fastapi.background import BackgroundTasks from temporalio import activity -from ..autogen.Chat import ChatInput -from ..autogen.Docs import ( +from ..autogen.openapi_model import ( + ChatInput, + SystemDef, + CreateSessionRequest, CreateDocRequest, HybridDocSearchRequest, TextOnlyDocSearchRequest, VectorDocSearchRequest, ) -from ..autogen.Sessions import CreateSessionRequest -from ..autogen.Tools import SystemDef + from ..common.protocol.tasks import StepContext from ..common.storage_handler import auto_blob_store from ..env import testing @@ -23,7 +24,7 @@ from .utils import get_handler -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def execute_system( context: StepContext, @@ -80,24 +81,31 @@ async def execute_system( arguments["x_developer_id"] = arguments.pop("developer_id") search_params = _create_search_request(arguments) return await handler(search_params=search_params, **arguments) - - # Handle chat operations - if system.operation == "chat" and system.resource == "session": - developer = get_developer(developer_id=arguments.pop("developer_id")) - session_id = arguments.pop("session_id") - x_custom_api_key = arguments.pop("x_custom_api_key", None) - chat_input = ChatInput(**arguments) - bg_runner = BackgroundTasks() - res = await handler( - developer=developer, - session_id=session_id, - background_tasks=bg_runner, - x_custom_api_key=x_custom_api_key, - chat_input=chat_input, - ) - - await bg_runner() - return res + + try: + # Handle chat operations + if system.operation == "chat" and system.resource == "session": + developer = get_developer(developer_id=arguments.get("developer_id")) + session_id = arguments.get("session_id") + x_custom_api_key = arguments.get("x_custom_api_key", None) + chat_input = ChatInput(**arguments) + bg_runner = BackgroundTasks() + res = await handler( + developer=developer, + session_id=session_id, + background_tasks=bg_runner, + x_custom_api_key=x_custom_api_key, + chat_input=chat_input, + ) + + await bg_runner() + return res + except Exception as e: + activity.logger.error(f"Error in execute_system_call: {e}") + activity.logger.error(f"arguments: {arguments}") + activity.logger.error(f"session_id: {session_id}") + activity.logger.error(f"chat_input: {chat_input}") + raise if system.operation == "create" and system.resource == "session": developer_id = arguments.pop("developer_id") diff --git a/agents-api/agents_api/autogen/openapi_model.py b/agents-api/agents_api/autogen/openapi_model.py index 3e44a71b2..b53b4f51f 100644 --- a/agents-api/agents_api/autogen/openapi_model.py +++ b/agents-api/agents_api/autogen/openapi_model.py @@ -354,6 +354,11 @@ def validate_subworkflows(self): # Create models # ------------- +from ..common.storage_handler import RemoteObject + +class SystemDef(SystemDef): + arguments: dict[str, Any] | None | RemoteObject = None + class CreateTransitionRequest(Transition): # The following fields are optional in this diff --git a/agents-api/agents_api/workflows/task_execution/__init__.py b/agents-api/agents_api/workflows/task_execution/__init__.py index 05f4ce795..411681cfb 100644 --- a/agents-api/agents_api/workflows/task_execution/__init__.py +++ b/agents-api/agents_api/workflows/task_execution/__init__.py @@ -39,8 +39,8 @@ WaitForInputStep, WorkflowStep, YieldStep, + SystemDef ) - from ...autogen.Tools import SystemDef from ...common.protocol.remote import RemoteList from ...common.protocol.tasks import ( ExecutionInput, From 61f66f12de156a1ee552604bdab70cf969e27286 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 15:22:09 +0300 Subject: [PATCH 21/28] Import all autogen code from openapi_model --- agents-api/agents_api/activities/task_steps/prompt_step.py | 2 +- agents-api/agents_api/models/chat/gather_messages.py | 3 +-- .../agents_api/routers/tasks/create_task_execution.py | 2 +- agents-api/tests/test_execution_queries.py | 7 ++++--- agents-api/tests/test_session_queries.py | 7 +++++-- 5 files changed, 12 insertions(+), 9 deletions(-) diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index 8a4f74c18..3d65ad93f 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -11,7 +11,7 @@ from temporalio import activity from temporalio.exceptions import ApplicationError -from ...autogen.Tools import Tool +from ...autogen.openapi_model import Tool from ...clients import ( litellm, # We dont directly import `acompletion` so we can mock it ) diff --git a/agents-api/agents_api/models/chat/gather_messages.py b/agents-api/agents_api/models/chat/gather_messages.py index 1a2216a0a..17955d183 100644 --- a/agents-api/agents_api/models/chat/gather_messages.py +++ b/agents-api/agents_api/models/chat/gather_messages.py @@ -6,8 +6,7 @@ from pycozo.client import QueryException from pydantic import ValidationError -from ...autogen.Chat import ChatInput -from ...autogen.openapi_model import DocReference, History +from ...autogen.openapi_model import DocReference, History, ChatInput from ...clients import litellm from ...common.protocol.developers import Developer from ...common.protocol.sessions import ChatContext diff --git a/agents-api/agents_api/routers/tasks/create_task_execution.py b/agents-api/agents_api/routers/tasks/create_task_execution.py index 24de79522..f8cbac12a 100644 --- a/agents-api/agents_api/routers/tasks/create_task_execution.py +++ b/agents-api/agents_api/routers/tasks/create_task_execution.py @@ -10,11 +10,11 @@ from starlette.status import HTTP_201_CREATED from temporalio.client import WorkflowHandle -from ...autogen.Executions import Execution from ...autogen.openapi_model import ( CreateExecutionRequest, ResourceCreatedResponse, UpdateExecutionRequest, + Execution, ) from ...clients.temporal import run_task_execution_workflow from ...dependencies.developer_id import get_developer_id diff --git a/agents-api/tests/test_execution_queries.py b/agents-api/tests/test_execution_queries.py index 42904776d..f072bf6e9 100644 --- a/agents-api/tests/test_execution_queries.py +++ b/agents-api/tests/test_execution_queries.py @@ -3,10 +3,11 @@ from temporalio.client import WorkflowHandle from ward import test -from agents_api.autogen.Executions import ( - CreateExecutionRequest, +from agents_api.autogen.openapi_model import ( + CreateTransitionRequest, + Execution, + CreateExecutionRequest ) -from agents_api.autogen.openapi_model import CreateTransitionRequest, Execution from agents_api.models.execution.create_execution import create_execution from agents_api.models.execution.create_execution_transition import ( create_execution_transition, diff --git a/agents-api/tests/test_session_queries.py b/agents-api/tests/test_session_queries.py index c0036d9b3..7e02caa7d 100644 --- a/agents-api/tests/test_session_queries.py +++ b/agents-api/tests/test_session_queries.py @@ -3,8 +3,11 @@ from ward import test -from agents_api.autogen.openapi_model import CreateOrUpdateSessionRequest, Session -from agents_api.autogen.Sessions import CreateSessionRequest +from agents_api.autogen.openapi_model import ( + CreateOrUpdateSessionRequest, + Session, + CreateSessionRequest, +) from agents_api.models.session.create_or_update_session import create_or_update_session from agents_api.models.session.create_session import create_session from agents_api.models.session.delete_session import delete_session From 057e60b372f81fa7b517f90a062652fd6ff9786d Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Tue, 19 Nov 2024 12:23:19 +0000 Subject: [PATCH 22/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/activities/execute_system.py | 9 ++++----- agents-api/agents_api/autogen/openapi_model.py | 1 + agents-api/agents_api/models/chat/gather_messages.py | 2 +- .../agents_api/routers/tasks/create_task_execution.py | 2 +- .../agents_api/workflows/task_execution/__init__.py | 2 +- agents-api/tests/test_execution_queries.py | 2 +- agents-api/tests/test_session_queries.py | 2 +- 7 files changed, 10 insertions(+), 10 deletions(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index a8ac893ab..549fdce23 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -9,14 +9,13 @@ from ..autogen.openapi_model import ( ChatInput, - SystemDef, - CreateSessionRequest, CreateDocRequest, + CreateSessionRequest, HybridDocSearchRequest, + SystemDef, TextOnlyDocSearchRequest, VectorDocSearchRequest, ) - from ..common.protocol.tasks import StepContext from ..common.storage_handler import auto_blob_store from ..env import testing @@ -81,8 +80,8 @@ async def execute_system( arguments["x_developer_id"] = arguments.pop("developer_id") search_params = _create_search_request(arguments) return await handler(search_params=search_params, **arguments) - - try: + + try: # Handle chat operations if system.operation == "chat" and system.resource == "session": developer = get_developer(developer_id=arguments.get("developer_id")) diff --git a/agents-api/agents_api/autogen/openapi_model.py b/agents-api/agents_api/autogen/openapi_model.py index b53b4f51f..f10f6a7de 100644 --- a/agents-api/agents_api/autogen/openapi_model.py +++ b/agents-api/agents_api/autogen/openapi_model.py @@ -356,6 +356,7 @@ def validate_subworkflows(self): from ..common.storage_handler import RemoteObject + class SystemDef(SystemDef): arguments: dict[str, Any] | None | RemoteObject = None diff --git a/agents-api/agents_api/models/chat/gather_messages.py b/agents-api/agents_api/models/chat/gather_messages.py index 17955d183..e6ffdb48e 100644 --- a/agents-api/agents_api/models/chat/gather_messages.py +++ b/agents-api/agents_api/models/chat/gather_messages.py @@ -6,7 +6,7 @@ from pycozo.client import QueryException from pydantic import ValidationError -from ...autogen.openapi_model import DocReference, History, ChatInput +from ...autogen.openapi_model import ChatInput, DocReference, History from ...clients import litellm from ...common.protocol.developers import Developer from ...common.protocol.sessions import ChatContext diff --git a/agents-api/agents_api/routers/tasks/create_task_execution.py b/agents-api/agents_api/routers/tasks/create_task_execution.py index f8cbac12a..ecc0aa470 100644 --- a/agents-api/agents_api/routers/tasks/create_task_execution.py +++ b/agents-api/agents_api/routers/tasks/create_task_execution.py @@ -12,9 +12,9 @@ from ...autogen.openapi_model import ( CreateExecutionRequest, + Execution, ResourceCreatedResponse, UpdateExecutionRequest, - Execution, ) from ...clients.temporal import run_task_execution_workflow from ...dependencies.developer_id import get_developer_id diff --git a/agents-api/agents_api/workflows/task_execution/__init__.py b/agents-api/agents_api/workflows/task_execution/__init__.py index 411681cfb..67d1f9546 100644 --- a/agents-api/agents_api/workflows/task_execution/__init__.py +++ b/agents-api/agents_api/workflows/task_execution/__init__.py @@ -34,12 +34,12 @@ SleepFor, SleepStep, SwitchStep, + SystemDef, ToolCallStep, TransitionTarget, WaitForInputStep, WorkflowStep, YieldStep, - SystemDef ) from ...common.protocol.remote import RemoteList from ...common.protocol.tasks import ( diff --git a/agents-api/tests/test_execution_queries.py b/agents-api/tests/test_execution_queries.py index f072bf6e9..0ea72ff95 100644 --- a/agents-api/tests/test_execution_queries.py +++ b/agents-api/tests/test_execution_queries.py @@ -4,9 +4,9 @@ from ward import test from agents_api.autogen.openapi_model import ( + CreateExecutionRequest, CreateTransitionRequest, Execution, - CreateExecutionRequest ) from agents_api.models.execution.create_execution import create_execution from agents_api.models.execution.create_execution_transition import ( diff --git a/agents-api/tests/test_session_queries.py b/agents-api/tests/test_session_queries.py index 7e02caa7d..8d7c07b36 100644 --- a/agents-api/tests/test_session_queries.py +++ b/agents-api/tests/test_session_queries.py @@ -5,8 +5,8 @@ from agents_api.autogen.openapi_model import ( CreateOrUpdateSessionRequest, - Session, CreateSessionRequest, + Session, ) from agents_api.models.session.create_or_update_session import create_or_update_session from agents_api.models.session.create_session import create_session From 25aa9a0f2fcea26518f360f671faddeee53e387b Mon Sep 17 00:00:00 2001 From: Ahmad-mtos Date: Tue, 19 Nov 2024 22:07:49 +0300 Subject: [PATCH 23/28] fix(agents-api, llm-proxy): Fix loading data from blob-store. Update llm-proxy image --- .../agents_api/activities/embed_docs.py | 2 +- .../activities/excecute_api_call.py | 2 +- .../agents_api/activities/execute_system.py | 41 ++++++++----------- .../activities/task_steps/base_evaluate.py | 2 +- .../activities/task_steps/cozo_query_step.py | 2 +- .../activities/task_steps/evaluate_step.py | 2 +- .../activities/task_steps/for_each_step.py | 2 +- .../activities/task_steps/get_value_step.py | 2 +- .../activities/task_steps/if_else_step.py | 2 +- .../activities/task_steps/log_step.py | 2 +- .../activities/task_steps/map_reduce_step.py | 2 +- .../activities/task_steps/prompt_step.py | 2 +- .../task_steps/raise_complete_async.py | 2 +- .../activities/task_steps/return_step.py | 2 +- .../activities/task_steps/set_value_step.py | 2 +- .../activities/task_steps/switch_step.py | 2 +- .../activities/task_steps/tool_call_step.py | 2 +- .../task_steps/wait_for_input_step.py | 2 +- .../activities/task_steps/yield_step.py | 2 +- .../agents_api/common/protocol/tasks.py | 6 ++- .../agents_api/common/storage_handler.py | 3 ++ llm-proxy/docker-compose.yml | 3 +- 22 files changed, 45 insertions(+), 44 deletions(-) diff --git a/agents-api/agents_api/activities/embed_docs.py b/agents-api/agents_api/activities/embed_docs.py index 0dbf7f03b..80765bb79 100644 --- a/agents-api/agents_api/activities/embed_docs.py +++ b/agents-api/agents_api/activities/embed_docs.py @@ -13,7 +13,7 @@ from .types import EmbedDocsPayload -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def embed_docs( payload: EmbedDocsPayload, cozo_client=None, max_batch_size: int = 100 diff --git a/agents-api/agents_api/activities/excecute_api_call.py b/agents-api/agents_api/activities/excecute_api_call.py index 6c60a5cc1..0232eba2f 100644 --- a/agents-api/agents_api/activities/excecute_api_call.py +++ b/agents-api/agents_api/activities/excecute_api_call.py @@ -20,7 +20,7 @@ class RequestArgs(TypedDict): headers: Optional[dict[str, str]] -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def execute_api_call( api_call: ApiCallDef, diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index 549fdce23..6ff22de6f 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -81,30 +81,23 @@ async def execute_system( search_params = _create_search_request(arguments) return await handler(search_params=search_params, **arguments) - try: - # Handle chat operations - if system.operation == "chat" and system.resource == "session": - developer = get_developer(developer_id=arguments.get("developer_id")) - session_id = arguments.get("session_id") - x_custom_api_key = arguments.get("x_custom_api_key", None) - chat_input = ChatInput(**arguments) - bg_runner = BackgroundTasks() - res = await handler( - developer=developer, - session_id=session_id, - background_tasks=bg_runner, - x_custom_api_key=x_custom_api_key, - chat_input=chat_input, - ) - - await bg_runner() - return res - except Exception as e: - activity.logger.error(f"Error in execute_system_call: {e}") - activity.logger.error(f"arguments: {arguments}") - activity.logger.error(f"session_id: {session_id}") - activity.logger.error(f"chat_input: {chat_input}") - raise + # Handle chat operations + if system.operation == "chat" and system.resource == "session": + developer = get_developer(developer_id=arguments.get("developer_id")) + session_id = arguments.get("session_id") + x_custom_api_key = arguments.get("x_custom_api_key", None) + chat_input = ChatInput(**arguments) + bg_runner = BackgroundTasks() + res = await handler( + developer=developer, + session_id=session_id, + background_tasks=bg_runner, + x_custom_api_key=x_custom_api_key, + chat_input=chat_input, + ) + + await bg_runner() + return res if system.operation == "create" and system.resource == "session": developer_id = arguments.pop("developer_id") diff --git a/agents-api/agents_api/activities/task_steps/base_evaluate.py b/agents-api/agents_api/activities/task_steps/base_evaluate.py index 2c56b315f..583e6c6c1 100644 --- a/agents-api/agents_api/activities/task_steps/base_evaluate.py +++ b/agents-api/agents_api/activities/task_steps/base_evaluate.py @@ -63,7 +63,7 @@ def _recursive_evaluate(expr, evaluator: SimpleEval): raise ValueError(f"Invalid expression: {expr}") -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def base_evaluate( exprs: Any, diff --git a/agents-api/agents_api/activities/task_steps/cozo_query_step.py b/agents-api/agents_api/activities/task_steps/cozo_query_step.py index 7a13ae6ec..16e9a53d8 100644 --- a/agents-api/agents_api/activities/task_steps/cozo_query_step.py +++ b/agents-api/agents_api/activities/task_steps/cozo_query_step.py @@ -8,7 +8,7 @@ from ...env import testing -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def cozo_query_step( query_name: str, diff --git a/agents-api/agents_api/activities/task_steps/evaluate_step.py b/agents-api/agents_api/activities/task_steps/evaluate_step.py index 4458bbd2d..06d3c7262 100644 --- a/agents-api/agents_api/activities/task_steps/evaluate_step.py +++ b/agents-api/agents_api/activities/task_steps/evaluate_step.py @@ -9,7 +9,7 @@ from ...env import testing -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def evaluate_step( context: StepContext, diff --git a/agents-api/agents_api/activities/task_steps/for_each_step.py b/agents-api/agents_api/activities/task_steps/for_each_step.py index df01c1ca8..76c74b3d6 100644 --- a/agents-api/agents_api/activities/task_steps/for_each_step.py +++ b/agents-api/agents_api/activities/task_steps/for_each_step.py @@ -11,7 +11,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def for_each_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/activities/task_steps/get_value_step.py b/agents-api/agents_api/activities/task_steps/get_value_step.py index dc9b73832..ca38bc4fe 100644 --- a/agents-api/agents_api/activities/task_steps/get_value_step.py +++ b/agents-api/agents_api/activities/task_steps/get_value_step.py @@ -8,7 +8,7 @@ # TODO: We should use this step to query the parent workflow and get the value from the workflow context # SCRUM-1 -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def get_value_step( context: StepContext, diff --git a/agents-api/agents_api/activities/task_steps/if_else_step.py b/agents-api/agents_api/activities/task_steps/if_else_step.py index 9b90647de..3d0a9739f 100644 --- a/agents-api/agents_api/activities/task_steps/if_else_step.py +++ b/agents-api/agents_api/activities/task_steps/if_else_step.py @@ -11,7 +11,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def if_else_step(context: StepContext) -> StepOutcome: # NOTE: This activity is only for logging, so we just evaluate the expression diff --git a/agents-api/agents_api/activities/task_steps/log_step.py b/agents-api/agents_api/activities/task_steps/log_step.py index 4c5158279..527a6f45f 100644 --- a/agents-api/agents_api/activities/task_steps/log_step.py +++ b/agents-api/agents_api/activities/task_steps/log_step.py @@ -11,7 +11,7 @@ from ...env import testing -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def log_step(context: StepContext) -> StepOutcome: # NOTE: This activity is only for logging, so we just evaluate the expression diff --git a/agents-api/agents_api/activities/task_steps/map_reduce_step.py b/agents-api/agents_api/activities/task_steps/map_reduce_step.py index 904a7082a..8237e37af 100644 --- a/agents-api/agents_api/activities/task_steps/map_reduce_step.py +++ b/agents-api/agents_api/activities/task_steps/map_reduce_step.py @@ -13,7 +13,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def map_reduce_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index 3d65ad93f..692da9a9f 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -86,7 +86,7 @@ def format_tool(tool: Tool) -> dict: @activity.defn -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def prompt_step(context: StepContext) -> StepOutcome: # Get context data diff --git a/agents-api/agents_api/activities/task_steps/raise_complete_async.py b/agents-api/agents_api/activities/task_steps/raise_complete_async.py index adae15b7e..640d6ae4e 100644 --- a/agents-api/agents_api/activities/task_steps/raise_complete_async.py +++ b/agents-api/agents_api/activities/task_steps/raise_complete_async.py @@ -11,7 +11,7 @@ @activity.defn -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def raise_complete_async(context: StepContext, output: Any) -> None: activity_info = activity.info() diff --git a/agents-api/agents_api/activities/task_steps/return_step.py b/agents-api/agents_api/activities/task_steps/return_step.py index e58c4d7e7..e00ad6d20 100644 --- a/agents-api/agents_api/activities/task_steps/return_step.py +++ b/agents-api/agents_api/activities/task_steps/return_step.py @@ -11,7 +11,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def return_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/activities/task_steps/set_value_step.py b/agents-api/agents_api/activities/task_steps/set_value_step.py index 707dbdeb0..dd2553abd 100644 --- a/agents-api/agents_api/activities/task_steps/set_value_step.py +++ b/agents-api/agents_api/activities/task_steps/set_value_step.py @@ -11,7 +11,7 @@ # TODO: We should use this step to signal to the parent workflow and set the value on the workflow context # SCRUM-2 -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def set_value_step( context: StepContext, diff --git a/agents-api/agents_api/activities/task_steps/switch_step.py b/agents-api/agents_api/activities/task_steps/switch_step.py index 413611e27..95c136890 100644 --- a/agents-api/agents_api/activities/task_steps/switch_step.py +++ b/agents-api/agents_api/activities/task_steps/switch_step.py @@ -11,7 +11,7 @@ from ..utils import get_evaluator -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def switch_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/activities/task_steps/tool_call_step.py b/agents-api/agents_api/activities/task_steps/tool_call_step.py index 03525e5ed..7992de19e 100644 --- a/agents-api/agents_api/activities/task_steps/tool_call_step.py +++ b/agents-api/agents_api/activities/task_steps/tool_call_step.py @@ -47,7 +47,7 @@ def construct_tool_call( @activity.defn -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def tool_call_step(context: StepContext) -> StepOutcome: assert isinstance(context.current_step, ToolCallStep) diff --git a/agents-api/agents_api/activities/task_steps/wait_for_input_step.py b/agents-api/agents_api/activities/task_steps/wait_for_input_step.py index d9839bc8e..db3e41055 100644 --- a/agents-api/agents_api/activities/task_steps/wait_for_input_step.py +++ b/agents-api/agents_api/activities/task_steps/wait_for_input_step.py @@ -8,7 +8,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def wait_for_input_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/activities/task_steps/yield_step.py b/agents-api/agents_api/activities/task_steps/yield_step.py index ec6c08353..8480beb93 100644 --- a/agents-api/agents_api/activities/task_steps/yield_step.py +++ b/agents-api/agents_api/activities/task_steps/yield_step.py @@ -10,7 +10,7 @@ from .base_evaluate import base_evaluate -@auto_blob_store +@auto_blob_store(deep=True) @beartype async def yield_step(context: StepContext) -> StepOutcome: try: diff --git a/agents-api/agents_api/common/protocol/tasks.py b/agents-api/agents_api/common/protocol/tasks.py index 7619cf7d8..05964b48a 100644 --- a/agents-api/agents_api/common/protocol/tasks.py +++ b/agents-api/agents_api/common/protocol/tasks.py @@ -82,6 +82,7 @@ "cancelled", "init_branch", "finish_branch", + "finish", ], # End states "finish": [], @@ -242,14 +243,17 @@ def model_dump(self, *args, **kwargs) -> dict[str, Any]: def prepare_for_step(self, *args, **kwargs) -> dict[str, Any]: current_input = self.current_input + inputs = self.inputs if activity.in_activity(): + inputs = [load_from_blob_store_if_remote(input) for input in inputs] current_input = load_from_blob_store_if_remote(current_input) # Merge execution inputs into the dump dict dump = self.model_dump(*args, **kwargs) + dump["inputs"] = inputs prepared = dump | {"_": current_input} - for i, input in enumerate(self.inputs): + for i, input in enumerate(inputs): prepared = prepared | {f"_{i}": input} if i >= 100: break diff --git a/agents-api/agents_api/common/storage_handler.py b/agents-api/agents_api/common/storage_handler.py index 99b30707f..894b0ff72 100644 --- a/agents-api/agents_api/common/storage_handler.py +++ b/agents-api/agents_api/common/storage_handler.py @@ -41,6 +41,9 @@ def load_from_blob_store_if_remote(x: Any | RemoteObject) -> Any: fetched = s3.get_object(x.key) return deserialize(fetched) + elif isinstance(x, RemoteList): + x = list(x) + return x diff --git a/llm-proxy/docker-compose.yml b/llm-proxy/docker-compose.yml index 6b7026e73..08491557c 100644 --- a/llm-proxy/docker-compose.yml +++ b/llm-proxy/docker-compose.yml @@ -1,7 +1,7 @@ name: julep-llm-proxy x--litellm-base: &litellm-base - image: julepai/litellm-database:fix_anthropic_tool_image_content + image: julepai/litellm-database:fix_anthropic_tool_image_content-amd64 restart: unless-stopped hostname: litellm ports: @@ -52,6 +52,7 @@ services: <<: *litellm-base profiles: - self-hosted-db + platform: linux/amd64 depends_on: - litellm-db From bea2681fd441c0606e37216bc01b1a89729bb323 Mon Sep 17 00:00:00 2001 From: vedantsahai18 Date: Fri, 22 Nov 2024 00:56:55 -0500 Subject: [PATCH 24/28] fix(agents-api): exec_system + chat bug fixes --- .../agents_api/activities/execute_system.py | 3 -- .../agents_api/routers/sessions/chat.py | 31 +++++++------------ 2 files changed, 12 insertions(+), 22 deletions(-) diff --git a/agents-api/agents_api/activities/execute_system.py b/agents-api/agents_api/activities/execute_system.py index 2839190c3..e42891d92 100644 --- a/agents-api/agents_api/activities/execute_system.py +++ b/agents-api/agents_api/activities/execute_system.py @@ -68,12 +68,9 @@ async def execute_system( if system.operation == "create" and system.subresource == "doc": arguments["x_developer_id"] = arguments.pop("developer_id") bg_runner = BackgroundTasks() - res = await handler( - bg_runner = BackgroundTasks() res = await handler( data=CreateDocRequest(**arguments.pop("data")), background_tasks=bg_runner, - background_tasks=bg_runner, **arguments, ) await bg_runner() diff --git a/agents-api/agents_api/routers/sessions/chat.py b/agents-api/agents_api/routers/sessions/chat.py index 4df113c9f..200832f4f 100644 --- a/agents-api/agents_api/routers/sessions/chat.py +++ b/agents-api/agents_api/routers/sessions/chat.py @@ -1,16 +1,11 @@ -import json from datetime import datetime from typing import Annotated, Callable, Optional from uuid import UUID, uuid4 -from anthropic import AsyncAnthropic from anthropic.types.beta.beta_message import BetaMessage from fastapi import BackgroundTasks, Depends, Header -from litellm import ChatCompletionMessageToolCall, Function, Message -from litellm.types.utils import Choices, ModelResponse from starlette.status import HTTP_201_CREATED -from ...activities.task_steps.prompt_step import format_tool from ...autogen.openapi_model import ( ChatInput, ChatResponse, @@ -18,14 +13,12 @@ CreateEntryRequest, MessageChatResponse, ) -from ...autogen.Tools import Tool from ...clients import litellm from ...common.protocol.developers import Developer from ...common.protocol.sessions import ChatContext from ...common.utils.datetime import utcnow from ...common.utils.template import render_template from ...dependencies.developer_id import get_developer_data -from ...env import anthropic_api_key from ...models.chat.gather_messages import gather_messages from ...models.chat.prepare_chat_context import prepare_chat_context from ...models.entry.create_entries import create_entries @@ -122,9 +115,9 @@ async def chat( is_claude_model = settings["model"].lower().startswith("claude-3.5") # Format tools for litellm - formatted_tools = ( - tools if is_claude_model else [format_tool(tool) for tool in tools] - ) + # formatted_tools = ( + # tools if is_claude_model else [format_tool(tool) for tool in tools] + # ) # FIXME: Truncate chat messages in the chat context # SCRUM-7 @@ -142,17 +135,13 @@ async def chat( for m in messages ] - # has_special_tools = any( - # tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - # for tool in formatted_tools - # ) - # FIXME: Hack to make the computer use tools compatible with litellm # Issue was: litellm expects type to be `computer_20241022` and spec to be # `function` (see: https://docs.litellm.ai/docs/providers/anthropic#computer-tools) # but we don't allow that (spec should match type). - for i, tool in enumerate(formatted_tools): - if tool.type == "computer_20241022": + formatted_tools = [] + for i, tool in enumerate(tools): + if tool.type == "computer_20241022" and tool.computer_20241022: function = tool.computer_20241022 tool = { "type": tool.type, @@ -165,9 +154,13 @@ async def chat( }, }, } - formatted_tools[i] = tool + formatted_tools.append(tool) + + # If not using Claude model, + + if not is_claude_model: + formatted_tools = None - # formatted_tools = None # Use litellm for other models model_response = await litellm.acompletion( messages=messages, From dbe6ae9134288bbc5054aa5b8b1a0979a7c066b9 Mon Sep 17 00:00:00 2001 From: vedantsahai18 Date: Fri, 22 Nov 2024 01:16:55 -0500 Subject: [PATCH 25/28] fix(agents-api): updated the prompt step --- .../activities/task_steps/prompt_step.py | 168 +++++------------- agents-api/agents_api/env.py | 1 - agents-api/docker-compose.yml | 1 - 3 files changed, 42 insertions(+), 128 deletions(-) diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index 692da9a9f..0b67a2aa9 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -1,13 +1,10 @@ -from datetime import datetime from typing import Callable -from anthropic import AsyncAnthropic # Import AsyncAnthropic client from anthropic.types.beta.beta_message import BetaMessage from beartype import beartype from langchain_core.tools import BaseTool from langchain_core.tools.convert import tool as tool_decorator -from litellm import ChatCompletionMessageToolCall, Function, Message -from litellm.types.utils import Choices, ModelResponse +from litellm.types.utils import ModelResponse from temporalio import activity from temporalio.exceptions import ApplicationError @@ -18,7 +15,6 @@ from ...common.protocol.tasks import StepContext, StepOutcome from ...common.storage_handler import auto_blob_store from ...common.utils.template import render_template -from ...env import anthropic_api_key, debug from ..utils import get_handler_with_filtered_params from .base_evaluate import base_evaluate @@ -26,22 +22,6 @@ def format_tool(tool: Tool) -> dict: - # FIXME: Wrong format for computer_20241022 for litellm - if tool.type == "computer_20241022": - return { - "type": tool.type, - "name": tool.name, - "display_width_px": tool.computer_20241022 - and tool.computer_20241022.display_width_px, - "display_height_px": tool.computer_20241022 - and tool.computer_20241022.display_height_px, - "display_number": tool.computer_20241022 - and tool.computer_20241022.display_number, - } - - if tool.type in ["bash_20241022", "text_editor_20241022"]: - return tool.model_dump(include={"type", "name"}) - if tool.type == "function": return { "type": "function", @@ -163,114 +143,50 @@ async def prompt_step(context: StepContext) -> StepOutcome: for fmt_tool, orig_tool in zip(formatted_tools, context.tools) } - # Check if the model is Anthropic - if agent_model.lower().startswith("claude-3.5") and any( - tool["type"] in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - for tool in formatted_tools - ): - # Retrieve the API key from the environment variable - betas = [COMPUTER_USE_BETA_FLAG] - # Use Anthropic API directly - client = AsyncAnthropic(api_key=anthropic_api_key) - - # Reformat the prompt for Anthropic - # Anthropic expects a list of messages with role and content (and no name etc) - prompt = [{"role": "user", "content": message["content"]} for message in prompt] - - # Filter tools for specific types - filtered_tools = [ - tool - for tool in formatted_tools - if tool["type"] - in ["computer_20241022", "bash_20241022", "text_editor_20241022"] - ] - - # Claude Response - claude_response: BetaMessage = await client.beta.messages.create( - model="claude-3-5-sonnet-20241022", - messages=prompt, - tools=filtered_tools, - max_tokens=1024, - betas=betas, - ) - - # Claude returns [ToolUse | TextBlock] - # We need to convert tool_use to tool_calls - # And set content = TextBlock.text - # But we need to ensure no more than one text block is returned - if ( - len([block for block in claude_response.content if block.type == "text"]) - > 1 - ): - raise ApplicationError("Claude should only return one message") - - text_block = next( - (block for block in claude_response.content if block.type == "text"), - None, - ) - - stop_reason = claude_response.stop_reason - - if stop_reason == "tool_use": - choice = Choices( - message=Message( - role="assistant", - content=text_block.text if text_block else None, - tool_calls=[ - ChatCompletionMessageToolCall( - type="function", - function=Function( - name=block.name, - arguments=block.input, - ), - ) - for block in claude_response.content - if block.type == "tool_use" - ], - ), - finish_reason="tool_calls", - ) - else: - assert ( - text_block - ), "Claude should always return a text block for stop_reason=stop" - - choice = Choices( - message=Message( - role="assistant", - content=text_block.text, - ), - finish_reason="stop", - ) - - response: ModelResponse = ModelResponse( - id=claude_response.id, - choices=[choice], - created=int(datetime.now().timestamp()), - model=claude_response.model, - object="text_completion", - ) - - else: - # FIXME: hardcoded tool to a None value as the tool calls are not implemented yet + # Check if using Claude model and has specific tool types + is_claude_model = agent_model.lower().startswith("claude-3.5") + + # FIXME: Hack to make the computer use tools compatible with litellm + # Issue was: litellm expects type to be `computer_20241022` and spec to be + # `function` (see: https://docs.litellm.ai/docs/providers/anthropic#computer-tools) + # but we don't allow that (spec should match type). + formatted_tools = [] + for i, tool in enumerate(context.tools): + if tool.type == "computer_20241022" and tool.computer_20241022: + function = tool.computer_20241022 + tool = { + "type": tool.type, + "function": { + "name": tool.name, + "parameters": { + k: v + for k, v in function.model_dump().items() + if k not in ["name", "type"] + }, + }, + } + formatted_tools.append(tool) + + if not is_claude_model: formatted_tools = None - # Use litellm for other models - completion_data: dict = { - "model": agent_model, - "tools": formatted_tools or None, - "messages": prompt, - **agent_default_settings, - **passed_settings, - } - extra_body = { - "cache": {"no-cache": debug or context.current_step.disable_cache}, - } + # Use litellm for other models + completion_data: dict = { + "model": agent_model, + "tools": formatted_tools or None, + "messages": prompt, + **agent_default_settings, + **passed_settings, + } - response: ModelResponse = await litellm.acompletion( - **completion_data, - extra_body=extra_body, - ) + extra_body = { + "cache": {"no-cache": debug or context.current_step.disable_cache}, + } + + response: ModelResponse = await litellm.acompletion( + **completion_data, + extra_body=extra_body, + ) if context.current_step.unwrap: if len(response.choices) != 1: diff --git a/agents-api/agents_api/env.py b/agents-api/agents_api/env.py index e33e3527a..3eb340cf4 100644 --- a/agents-api/agents_api/env.py +++ b/agents-api/agents_api/env.py @@ -25,7 +25,6 @@ hostname: str = env.str("AGENTS_API_HOSTNAME", default="localhost") public_port: int = env.int("AGENTS_API_PUBLIC_PORT", default=80) api_prefix: str = env.str("AGENTS_API_PREFIX", default="") -anthropic_api_key: str = env.str("ANTHROPIC_API_KEY", default=None) # Tasks # ----- diff --git a/agents-api/docker-compose.yml b/agents-api/docker-compose.yml index 59a8cfd7d..23cb6dd61 100644 --- a/agents-api/docker-compose.yml +++ b/agents-api/docker-compose.yml @@ -28,7 +28,6 @@ x--shared-environment: &shared-environment S3_ENDPOINT: ${S3_ENDPOINT:-http://seaweedfs:8333} S3_ACCESS_KEY: ${S3_ACCESS_KEY} S3_SECRET_KEY: ${S3_SECRET_KEY} - ANTHROPIC_API_KEY: ${ANTHROPIC_API_KEY} x--base-agents-api: &base-agents-api image: julepai/agents-api:${TAG:-dev} From bc0e0d4bf6b7bd5af064aa1fcc8ae90371dc00ac Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Fri, 22 Nov 2024 09:48:00 +0300 Subject: [PATCH 26/28] Add missing debug var from env --- agents-api/agents_api/activities/task_steps/prompt_step.py | 1 + 1 file changed, 1 insertion(+) diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index 0b67a2aa9..8da0e49c7 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -17,6 +17,7 @@ from ...common.utils.template import render_template from ..utils import get_handler_with_filtered_params from .base_evaluate import base_evaluate +from ...env import debug COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" From bd5ba4fa787c29e8d827eb3aa7df05e6033b88de Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Fri, 22 Nov 2024 06:48:49 +0000 Subject: [PATCH 27/28] refactor: Lint agents-api (CI) --- agents-api/agents_api/activities/task_steps/prompt_step.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/agents-api/agents_api/activities/task_steps/prompt_step.py b/agents-api/agents_api/activities/task_steps/prompt_step.py index 8da0e49c7..bf2b413ae 100644 --- a/agents-api/agents_api/activities/task_steps/prompt_step.py +++ b/agents-api/agents_api/activities/task_steps/prompt_step.py @@ -15,9 +15,9 @@ from ...common.protocol.tasks import StepContext, StepOutcome from ...common.storage_handler import auto_blob_store from ...common.utils.template import render_template +from ...env import debug from ..utils import get_handler_with_filtered_params from .base_evaluate import base_evaluate -from ...env import debug COMPUTER_USE_BETA_FLAG = "computer-use-2024-10-22" From 65e7f39f2da3e954bd8edfc5603cedbe0a222f18 Mon Sep 17 00:00:00 2001 From: HamadaSalhab Date: Fri, 22 Nov 2024 10:05:49 +0300 Subject: [PATCH 28/28] Fix browser use cookbook --- cookbooks/06-browser-use.ipynb | 127 ++++++++++++++++++++++++++++++--- 1 file changed, 116 insertions(+), 11 deletions(-) diff --git a/cookbooks/06-browser-use.ipynb b/cookbooks/06-browser-use.ipynb index 28b6c35f6..62e024305 100644 --- a/cookbooks/06-browser-use.ipynb +++ b/cookbooks/06-browser-use.ipynb @@ -138,7 +138,18 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mWARNING: Ignoring invalid distribution ~ulep (/Users/hamadasalhab/Documents/repos/julep-ai/julep/agents-api/.venv/lib/python3.12/site-packages)\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution ~ulep (/Users/hamadasalhab/Documents/repos/julep-ai/julep/agents-api/.venv/lib/python3.12/site-packages)\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution ~ulep (/Users/hamadasalhab/Documents/repos/julep-ai/julep/agents-api/.venv/lib/python3.12/site-packages)\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], "source": [ "!pip install julep -U --quiet" ] @@ -187,7 +198,7 @@ "api_key = os.getenv(\"JULEP_API_KEY\")\n", "\n", "# Create a Julep client\n", - "client = Client(api_key=api_key, environment=\"dev\")" + "client = Client(api_key=api_key, environment=\"local_multi_tenant\")" ] }, { @@ -232,7 +243,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -269,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -526,7 +537,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -534,7 +545,11 @@ "task = client.tasks.create_or_update(\n", " task_id=TASK_UUID,\n", " agent_id=AGENT_UUID,\n", - " **task_def\n", + " **task_def,\n", + " extra_body={\n", + " \"run_browser\": task_def[\"run_browser\"],\n", + " \"check_goal_status\": task_def[\"check_goal_status\"],\n", + " }\n", ")" ] }, @@ -554,14 +569,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Started an execution. Execution ID: 8fbb3530-de78-46d3-93f1-b40d632d5367\n" + ] + } + ], "source": [ "execution = client.executions.create(\n", " task_id=task.id,\n", " input={\n", - " \"agent_id\": AGENT_UUID,\n", + " \"agent_id\": str(AGENT_UUID),\n", " \"goal\": \"Navigate to JulepAI's Github repository and tell me the number of stars it has. Remember bro, the link for julep's repository is https://github.com/julep-ai/julep\",\n", " }\n", ")\n", @@ -625,9 +648,91 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transition type: init\n", + "Transition output: {'agent_id': '07648b48-4ca7-4076-81db-c29eccc15f80', 'goal': \"Navigate to JulepAI's Github repository and tell me the number of stars it has. Remember bro, the link for julep's repository is https://github.com/julep-ai/julep\"}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'auto_run_tools': False, 'context_overflow': None, 'created_at': '2024-11-22T07:04:47.809701Z', 'id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'kind': None, 'metadata': {}, 'render_templates': True, 'situation': '', 'summary': None, 'token_budget': None, 'updated_at': '2024-11-22T07:04:47Z'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'avgCpuUsage': None, 'contextId': None, 'createdAt': '2024-11-22T07:04:51.047247+00:00', 'endedAt': None, 'expiresAt': '2024-11-22T07:19:51.009+00:00', 'id': 'a959cfd1-1b96-4c15-b025-863c31ffcea5', 'keepAlive': None, 'memoryUsage': None, 'projectId': 'c35ee022-883e-4070-9f3c-89607393214b', 'proxyBytes': 0, 'startedAt': '2024-11-22T07:04:51.009+00:00', 'status': 'RUNNING'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'browser_session_id': 'a959cfd1-1b96-4c15-b025-863c31ffcea5'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'urls': {'debuggerFullscreenUrl': 'https://www.browserbase.com/devtools-fullscreen/inspector.html?wss=connect.browserbase.com/debug/a959cfd1-1b96-4c15-b025-863c31ffcea5/devtools/page/6B58334B1B83E8419C546ECD99DF70C8?debug=true', 'debuggerUrl': 'https://www.browserbase.com/devtools/inspector.html?wss=connect.browserbase.com/debug/a959cfd1-1b96-4c15-b025-863c31ffcea5/devtools/page/6B58334B1B83E8419C546ECD99DF70C8?debug=true', 'wsUrl': 'wss://connect.browserbase.com/debug/a959cfd1-1b96-4c15-b025-863c31ffcea5/devtools/browser/bf6e1919-d6b7-44ee-8ec3-5cd8dd2faab8'}}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'debugger_url': 'https://www.browserbase.com/devtools/inspector.html?wss=connect.browserbase.com/debug/a959cfd1-1b96-4c15-b025-863c31ffcea5/devtools/page/6B58334B1B83E8419C546ECD99DF70C8?debug=true'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'connect_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'base64_image': None, 'error': None, 'output': 'https://www.google.com', 'system': None}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': \"\\n\\n* You are utilising a headless chrome browser to interact with the internet.\\n* You can use the computer tool to interact with the browser.\\n* You have access to only the browser.\\n* You are already inside the browser.\\n* You can't open new tabs or windows.\\n* For now, rely on screenshots as the only way to see the browser.\\n* You can't don't have access to the browser's UI.\\n* YOU CANNOT WRITE TO THE SEARCH BAR OF THE BROWSER.\\n\\n\\n*Navigate to JulepAI's Github repository and tell me the number of stars it has. Remember bro, the link for julep's repository is https://github.com/julep-ai/julep\\n\", 'role': 'user'}], 'workflow_label': 'run_browser'}\n", + "--------------------------------------------------\n", + "Transition type: init_branch\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': \"\\n\\n* You are utilising a headless chrome browser to interact with the internet.\\n* You can use the computer tool to interact with the browser.\\n* You have access to only the browser.\\n* You are already inside the browser.\\n* You can't open new tabs or windows.\\n* For now, rely on screenshots as the only way to see the browser.\\n* You can't don't have access to the browser's UI.\\n* YOU CANNOT WRITE TO THE SEARCH BAR OF THE BROWSER.\\n\\n\\n*Navigate to JulepAI's Github repository and tell me the number of stars it has. Remember bro, the link for julep's repository is https://github.com/julep-ai/julep\\n\", 'role': 'user'}], 'workflow_label': 'run_browser'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'choices': [{'finish_reason': 'tool_calls', 'index': 0, 'logprobs': None, 'message': {'content': \"I'll help you navigate to JulepAI's Github repository to check its stars. Let me break this down into steps:\\n\\n1. First, let me take a screenshot to see where we are:\", 'created_at': None, 'id': None, 'name': None, 'role': 'assistant', 'tool_call_id': None, 'tool_calls': [{'api_call': None, 'bash_20241022': None, 'computer_20241022': None, 'function': {'arguments': '{\"action\": \"screenshot\"}', 'name': 'computer'}, 'id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ', 'integration': None, 'system': None, 'text_editor_20241022': None, 'type': 'function'}]}, 'tool_calls': None}], 'created_at': '2024-11-22T07:05:08.603440Z', 'docs': [], 'id': 'cde04753-fd04-4016-a812-e13d4ac2e3fc', 'jobs': [], 'usage': {'completion_tokens': 95, 'prompt_tokens': 1335, 'total_tokens': 1430}}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'content': \"I'll help you navigate to JulepAI's Github repository to check its stars. Let me break this down into steps:\\n\\n1. First, let me take a screenshot to see where we are:\", 'tool_calls': [{'action': 'screenshot', 'coordinate': None, 'text': None, 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}]}\n", + "--------------------------------------------------\n", + "Transition type: init_branch\n", + "Transition output: {'action': 'screenshot', 'coordinate': None, 'text': None, 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}\n", + "--------------------------------------------------\n", + "Transition type: finish_branch\n", + "Transition output: {'base64_image': '', 'error': None, 'output': None, 'system': 'take_screenshot'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: [{'base64_image': '', 'error': None, 'output': None, 'system': 'take_screenshot'}]\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'contents': [{'image_url': {'url': ''}, 'type': 'image_url'}]}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}]}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}], 'workflow_label': 'check_goal_status'}\n", + "--------------------------------------------------\n", + "Transition type: init_branch\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}], 'workflow_label': 'check_goal_status'}\n", + "--------------------------------------------------\n", + "Transition type: init_branch\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}], 'workflow_label': 'check_goal_status'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}], 'workflow_label': 'run_browser'}\n", + "--------------------------------------------------\n", + "Transition type: init_branch\n", + "Transition output: {'cdp_url': 'wss://connect.browserbase.com/?apiKey=bb_live_fvKLOUF6VHrh78JFPRolwpPlQug&sessionId=a959cfd1-1b96-4c15-b025-863c31ffcea5', 'julep_session_id': 'e2086073-f24c-4a1e-8551-f49b978dc63d', 'messages': [{'content': [{'image_url': {'url': ''}, 'type': 'image_url'}], 'name': 'computer', 'role': 'tool', 'tool_call_id': 'toolu_01KVBWUuhNPpZ2UB7FFNr5DJ'}], 'workflow_label': 'run_browser'}\n", + "--------------------------------------------------\n", + "Transition type: step\n", + "Transition output: {'choices': [{'finish_reason': 'tool_calls', 'index': 0, 'logprobs': None, 'message': {'content': \"2. Since we need to go to a specific URL (https://github.com/julep-ai/julep), I'll type the URL:\", 'created_at': None, 'id': None, 'name': None, 'role': 'assistant', 'tool_call_id': None, 'tool_calls': [{'api_call': None, 'bash_20241022': None, 'computer_20241022': None, 'function': {'arguments': '{\"action\": \"type\", \"text\": \"https://github.com/julep-ai/julep\"}', 'name': 'computer'}, 'id': 'toolu_01T4kCjSbcj3bug9PepZfw6J', 'integration': None, 'system': None, 'text_editor_20241022': None, 'type': 'function'}]}, 'tool_calls': None}], 'created_at': '2024-11-22T07:05:25.267991Z', 'docs': [], 'id': 'e2117108-a359-450e-ab88-20ffc3e23e6b', 'jobs': [], 'usage': {'completion_tokens': 114, 'prompt_tokens': 2489, 'total_tokens': 2603}}\n", + "--------------------------------------------------\n" + ] + } + ], "source": [ "# Lists all the task steps that have been executed up to this point in time\n", "transitions = client.executions.transitions.list(execution_id=execution.id).items\n",