Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

奇怪的知识——位掩码 #29

Open
jrainlau opened this issue Feb 20, 2021 · 0 comments
Open

奇怪的知识——位掩码 #29

jrainlau opened this issue Feb 20, 2021 · 0 comments
Labels

Comments

@jrainlau
Copy link
Owner

jrainlau commented Feb 20, 2021

image

在春节假期无聊刷手机的时候,偶然间看到了一篇关于“位掩码”的文章,本身就是奇怪知识的它可以用来解决一些奇怪的问题,实在是非常有趣。

位运算符

在了解“位掩码”之前,首先要学会位运算符。

我们知道,在计算机中数据其实都是以二进制的形式所储存的,而位运算符则可以对二进制数据进行操作。举个简单的例子,给定两个二进制数据(其中 0b 是二进制数据的前缀):

const A = 0b1010
const B = 0b1111

image

1、按位非运算符 ~

对每一位执行**非(NOT)**操作,也可以理解为取反码。
image

2、按位与运算符 &

对每一位执行**与(AND)**操作,只要对应位置均为 1 时,结果才为 1,否则为 0。
image

3、按位或运算符 |

对每一位执行**或(OR)**操作,只要对应位置有一个 1 时,结果就为 1。
image

4、按位异或运算符 ^

对每一位执行**异或(XOR)**操作,当对应位置有且只有一个 1 时,结果就为 1,否则为 0。
image

5、左移运算符 <<

将数据向左移动一定的位(<32),右边用 0 填充。
image

6、右移运算符 >>

将数据向右移动一定的位(<32),遗弃被丢出的位。
image


在学习完了位运算符以后,肯定有人会说,道理都明白了,那么这些位运算符有什么用呢?应该在什么场合使用呢?平时的业务开发中也没见过,是不是其实学了也没什么用?

对于这个问题,答案确实是“是的,这个知识其实没什么用“。但是呢,秉承着探索的精神,我们也许可以用这个”没什么用的知识“去解决一些已知的问题。当然,在后续的例子中,你可能会觉得我在小题大做。不过没关系,学习本来就是枯燥的事情,能够找到些有趣的方式去学习枯燥的知识,也是很快乐的

权限系统

假设我们有一个权限系统,它通过 JSON 的方式记录了某个用户的权限开通情况(姑且假设权限集是 CURD):

const permission = {
  create: false,
  update: false,
  read: true,
  delete: false,
}

如果我们把 false 写成 0,true 写成 1,那么这个 permisson 对象可以简写为 0b0010

const permission = {
  create: false,
  update: false,
  read: true,
  delete: false,
}

// 从左往右,依次为 create, update, read, delete 所对应的值
const permissionBinary = 0b0010

对于 JSON 对象的权限集,如果我们要查看或者修改该用户的某些权限,只需要通过形如 permission.craete 的普通对象操作即可。那么如果对于二进制形式的权限集,我们又应该如何进行查看或者修改的操作呢?接下来我们就开始使用奇怪的知识——位掩码来进行了。

位掩码

首先进行名词解释,什么是”位掩码“。

位掩码(BitMask),是”位(Bit)“和”掩码(Mask)“的组合词。”位“指代着二进制数据当中的二进制位,而”掩码“指的是一串用于与目标数据进行按位操作的二进制数字。组合起来,就是”用一串二进制数字(掩码)去操作另一串二进制数字“的意思。

明白了位掩码的作用以后,我们就可以通过它来对权限集二进制数进行操作了。

1、查询用户是否拥有某个权限

已知用户权限集二进制数为 permissionBinary = 0b0010。如果我想知道该用户是否存在 update 这个权限,可以先给定一个位掩码 mask = 0b1

image

由于 update 位于右数第三项,所以只需要把位掩码向左移动两位,剩余位置补0。最后和权限集二进制数进行按位与运算即可得到结果。
image

最后算出来的 result 为 0b0000,使用 Boolean() 函数处理之即可得到 false 的结果,也就是说该用户的 update 权限为 false

// 从左往右,依次为 create, update, read, delete 所对应的值
const permissionBinary = 0b0010

// 由于 update 位于右数第三位,因此只需要让掩码向左移动2位即可
const mask = 0b1 << 2

const result = permissionBinary & mask

Boolean(result) // false

2、修改用户的某个权限

当我们明白了如何用位掩码来查询权限后,要修改对应的权限也就手到擒来了,无非就是换一种位运算。假设还是 update 权限,如果我想把它修改成 true,我们可以这么干:

image

只需要把按位与改为按位异或即可,代码如下:

// 从左往右,依次为 create, update, read, delete 所对应的值
const permissionBinary = 0b0010

// 由于 update 位于右数第三位,因此只需要让掩码向左移动2位即可
const mask = 0b1 << 2

const result = permissionBinary ^ mask

parseInt(result).toString(2) // 0b0110

经过上面的内容,相信你已经基本掌握了位掩码的知识,同时你肯定还有很多问号,比如说这么复杂又不好阅读的代码,真的有意义吗?

脏数据记录

前文例子中的权限系统仅有区区4个数据的处理,位掩码技术显得复杂又小题大做。那么有没有什么场景是真的适合使用位掩码的呢?脏数据记录就是其中一个。

假设我们存在着一份原始数据,其值如下:

let A = 'a'
let B = 'b'
let C = 'c'
let D = 'd'

给定一个二进制数,从左往右分别对应着 A/B/C/D 的状态:

let O = 0b0000 // 十进制 0

则数据一旦发生了修改,都可以用对应的比特位来表示

// 当且仅当 A 发生了修改
O = 0b1000 // 十进制 8

// 当且仅当 B 发生了修改
O = 0b0100 // 十进制 4

// 当且仅当 C 发生了修改
O = 0b0010 // 十进制 2

// 当且仅当 D 发生了修改
O = 0b0001 // 十进制 1

同理,当多个数据发生了修改时,则可以同时表示

// 当 A 和 B 发生了修改
O = 0b1100 // 十进制 12

// 当 A/B/C 都发生了修改
O = 0b1110 // 十进制 14

通过这个思路,应用排列组合的思想,可以很快知道只需要仅仅 4 个比特位,就可以表达 16 种数据变化的情况。由于二进制和十进制可以相互转化,因此只需要区区 16 个十进制数,就可以完整地表达 A/B/C/D 这四个数据的变化情况,也就是脏数据追踪。举个例子,给定一个脏数据记录 14,二进制转换为 0b1110,因此表示 A/B/C 的数据被修改了。

Svelte 这个框架,就是通过这个思路来实现响应式的:

if ( A 数据变了 ) {
  更新A对应的DOM节点
}
if ( B 数据变了 ) {
  更新B对应的DOM节点
}

/** 转化成伪代码 **/

if ( dirty & 8 ) { // 8 === 0b1000
  更新A对应的DOM节点
}
if ( dirty & 4 ) { // 4 === 0b0100
  更新B对应的DOM节点
}

更多具体的介绍可以查看《新兴前端框架 Svelte 从入门到原理》

老鼠喝毒药

除了用来做脏数据记录以外,位掩码也能够用来处理经典的”老鼠喝毒药“的问题。

有 1000 瓶水,其中有一瓶有毒,小白鼠只要尝一点带毒的水24小时后就会死亡,问至少要多少只小白鼠才能在24小时内鉴别出哪瓶水有毒?

我们简化一下问题,假设只有 8 瓶水,其编号用二进制表示:
image

接着按照图示的方式对水瓶的水进行混合,得到样品 A/B/C/D,取4只老鼠编号为 a/b/c/d 分别喝下对应的水,得到如下的表格:
image

在 24 小时候,统计老鼠的死亡情况,汇总后可以得到表格和结果:
image

答案呼之欲出,由于 8 瓶水可以兑出 4 份样品,因此只需要 4 只老鼠即可在 24 小时后确定到底哪一瓶水是有毒的。回到题目,如果是 1000 瓶水,只需要知道第 1000 号的二进制数 0b1111101000即可。该二进制数一共有 10 个比特位,意味着 1000 瓶水可以兑出 10 份样品,也就是说只需要 10 只老鼠,就可以完成测试任务。

结合时事,核酸筛查也许也可以使用这么一个算法,感兴趣的同学不妨思考一下。

尾声

关于位掩码技术的探索就到这里。相信在认真读完这篇文章以后,大家心里已经建立起对位掩码技术的概念。这是一种非常特别的问题解决思路,也许在未来的某一天你真的会用上它。

@jrainlau jrainlau changed the title 位掩码技术的探索 奇怪的知识之位掩码技术 Feb 20, 2021
@jrainlau jrainlau changed the title 奇怪的知识之位掩码技术 奇怪的知识之位掩码 Feb 20, 2021
@jrainlau jrainlau changed the title 奇怪的知识之位掩码 奇怪的知识——位掩码 Feb 20, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant