-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08.tex
224 lines (205 loc) · 9.41 KB
/
08.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
\chapter{November 3 - November 8}
\section{Sylvester's Law of Inertia}
\begin{remark}
Given a symmetric bilinear form $B$, let $S = \setof{\vec v_1,\ldots,\vec v_n}$ be a basis that makes $B$ diagonal, then we have
\begin{align}
B(a_1\vec v_1 + \cdots + a_n\vec v_n, b_1\vec v_1 + \cdots + b_n\vec v_n)
&= a_1b_1B(\vec v_1,\vec v_1) + \cdots + a_nb_nB(\vec v_n, \vec v_n)
\end{align}
If $B$ is a bilinear form over $\C$, then we can replace each $\vec v_i$ with $\frac{1}{c_i}\vec v_i$ where $c_i^2 = B(\vec v_i, \vec v_i)$
for all $\vec v_i$ where $c_i \ne 0$. Then the matrix of $B$ with our new basis is of the form
\begin{align}
\bmatr{
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
}
\end{align}
That is, the matrix is diagonal where the only non-zero entries are 1s.
\end{remark}
\begin{remark}
Over $\R$ we can do something similar choosing $c_i^2 = \abs{B(\vec v_i, \vec v_i)}$ which would give us a diagonal matrix
where the only non-zero entries are 1s or -1s.
\end{remark}
\begin{theorem}[Sylvester's Law of Inertia]
Let $B$ be ea symmetric bilinear form over a real finite dimensional vector space $V$.
Then every diagonal matrix representing $B$ has the same number of positive entries.
\end{theorem}
\begin{proof}
For any two bases that diagonalize $B$, reorder them as $\setof{\vec v_1,\ldots, \vec v_n}$ and $\setof{\vec w_1,\ldots,\vec w_n}$ so that
\begin{align}
B(\vec v_i,\vec v_i) &\begin{cases}
> 0 & 1 \le i \le p \\
< 0 & p_1 \le i \le r \\
= 0 & r+1 \le i \le n
\end{cases} &
B(\vec w_i,\vec w_i) &\begin{cases}
> 0 & 1 \le i \le q \\
< 0 & q_1 \le i \le r \\
= 0 & r+1 \le i \le n
\end{cases}
\end{align}
That is, we place the vectors that give positive entries in matrix first, followed by the negative entries, followed by the zeros.
Assume without loss of generality that $p \le q$. Then define $\phi : V \to \R^{p-q+r}$ by
\begin{align}
\phi(\vec x) &= (B(\vec x, \vec v_1),\ldots,B(\vec x, \vec v_p),B(\vec x, \vec w_{q+1}),\ldots,B(\vec x, \vec w_r))
\end{align}
Then Rank-Nullity Theorem tells us that
\begin{align}
\rank \phi &\le p-q + r & \nul \phi &\ge n-(p-q+r) \ge n-r
\end{align}
Suppose that $\vec v \in \ker \phi$, then
\begin{align}
B(\vec v, \vec v_i) &= 0 \text{ for } 1 \le i \le p &
B(\vec v, \vec w_j) &= 0 \text{ for } q+1 \le j \le r
\end{align}
Writing $\vec v = a_1\vec v_1 + \cdots + a_n\vec v_n = b_1\vec w_1 + \cdots + b_n \vec w_n$ we see that
\begin{align}
0 = B(\vec v, \vec v_i) &= a_i \text{ for } 1 \le i \le p &
0 = B(\vec v, \vec w_j) &= b_j \text{ for } q+1 \le j \le r
\end{align}
So taking $B(\vec v, \vec v)$ tells us that
\begin{align}
B(\vec v, \vec v) &= \sum_{i=1}^n a_i^2B(\vec v_i, \vec v_i) \le 0 &
B(\vec v, \vec v) &= \sum_{j=1}^n b_j^2B(\vec w_j, \vec w_j) \ge 0
\end{align}
So $\vec v \in \spanof{\vec v_{r+1},\ldots,\vec v_n}$. Thus $\ker \phi \subseteq \spanof{\vec v_{r+1},\ldots,\vec v_n}$
so $\null \phi \le n-r$ which, by our earlier observation, means that $\null \phi = n-r$ so $\rank \phi = r$ so $p=q$.
\end{proof}
\begin{remark}
This means that for any real symmetric bilinear form, when representing as a diagonal matrix whose non-zero entries are $\pm 1$,
the number of 1s and -1s is independent of our choice of basis.
\end{remark}
\begin{definition}[Index]
We call the number of 1s the \emph{index}
\end{definition}
\begin{definition}[Signature]
We call difference between the number of 1s and -1s the \emph{signature}.
Note that this is sometimes given as a pair. That is, we would say that the following matrix
\begin{align}
\pmatr{
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
}
\end{align}
has \emph{signature} (1, 2) or has \emph{signature} -1.
\end{definition}
\begin{definition}[Rank]
We call the number of non-zero entries the \emph{rank}.
This is equivalent to the \emph{rank} of the associated matrix since the rank of a matrix is invariant under congruence.
Indeed, multiplying a matrix by an invertible matrix does not change its rank.
\end{definition}
\section{Cayley-Hamilton Theorem}
\begin{theorem}[Cayley-Hamilton Theorem]
Let $T : V \to V$ be a linear transformation over a finite dimensional vector space,
and let $f(\lambda)$ be the characteristic polynomial. Then
\begin{align}
f(T) &= {\bf 0}
\end{align}
\end{theorem}
\begin{proof}
We will show that for any $\vec v \in V$ that $\left[f(T)\right](\vec v) = \vec 0$.
For $\vec v = \vec 0$ this holds trivially, so suppose $\vec v \ne \vec 0$. Then define
\begin{align}
W &= \spanof{\vec v, T\vec v, T^2\vec v, \ldots }
\end{align}
Let $j$ be the smallest integer for which $\setof{\vec v,\ldots,T^j\vec v}$ is linearly dependent.
Then by choice of $j$, $\setof{\vec v,\ldots,T^{j-1}\vec v}$ is linearly independent.
We claim that it is also spanning. Indeed,
\begin{align}
T^j\vec v &\in \spanof{\vec v,\ldots,T^{j-1}\vec v}
\end{align}
and inductively, if $T^k \vec v \in \spanof{\vec v, \ldots, T^{j-1},\vec v}$ for all $k$ then
\begin{align}
T^{k+1}\vec v = T\paren{T^k\vec v}
&= T\paren{a_1\vec v + \cdots + a_jT^{j-1}\vec v} \\
&= a_1T\vec v + \cdots + a_{j-1}T^{j}\vec v \\
&\in \spanof{\vec v,\ldots,T^{j-1}\vec v}
\end{align}
Thus $T\big\rvert_{W} : W \to W$ is well defined, and for basis $B = \setof{\vec v_1,\ldots,T^{j-1}\vec v}$ of $W$ we have
\begin{align}
\left[T\big\rvert_{W}\right]_B &= \bmatr{
0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
0 & 1 & \cdots & 0 & -a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{j-1} \\
}
\end{align}
whose determinant is
\begin{align}
g(\lambda) &= (-1)^j(\lambda^j + a_{j-1}\lambda^{j-1} + \cdots + a_0)
\end{align}
Extending our basis $B$ to a basis $B'$ for all of $V$, the matrix of $T$ becomes
\begin{align}
[T]_{B'} &= \bmatr{
\left[T\big\rvert_{W}\right]_B & A \\
{\bf 0} & B
}
\end{align}
Since the bottom left are all zeros, if $q(\lambda)$ is the characteristic polynomial for $B$,
then $f(\lambda) = q(\lambda)g(\lambda)$. That is, $g(\lambda) \vert f(\lambda)$ so
\begin{align}
\left[f(T)\right](\vec v) &= q(T)g(T)\vec v \\
&= (-1)^{j-1}q(T)(T^j + a_{j-1}T^{j-1} + \cdots + a_0)\vec v \\
&= (-1)^{j-1}q(T)(T^j - T^j)\vec v \\
&= (-1)^{j-1}q(T)\vec 0 = \vec 0
\end{align}
\end{proof}
\begin{corollary}[Nilpotency of Matrices Eigenvalues 0] \label{eigenvaluezeronilpotent}
If $T : V \to V$ is a linear transformation over $\C$ whose only eigenvalue is zero,
then $T^n = {\bf 0}$ where $n = \dim V$.
\end{corollary}
\begin{proof}
If 0 is the only eigenvalues of $T$ then the characteristic polynomial for $T$ must be $a\lambda^n$
for some $a \in \C$, so by Cayley-Hamilton Theorem, $aT^n = {\bf 0} = T^n$.
\end{proof}
\begin{definition}[Nilpotency]
If $T : V \to V$ is a linear transformation such that $T^n = {\bf 0}$, we say $T$ is \emph{nilpotent}.
\end{definition}
\section{Jordan Canonical Form (Nilpotent Transformations)}
Suppose that $T : V \to V$ is a complex linear transformation whose only eigenvalue is 0.
Then by corollary to the Cayley-Hamilton Theorem \ref{eigenvaluezeronilpotent}, we have that $T^n = {\bf 0}$
where $n = \dim V$.
\begin{definition}[Chain]
We call a set $\setof{T^{j-1}\vec v, T^{j-2}\vec v, \ldots, \vec v}$ such that $T^j\vec v = \vec 0$ a \emph{chain}
\end{definition}
\begin{remark}
Since $T^n = {\bf 0}$, we can construct a \emph{chain} for any $\vec v \in V$.
\end{remark}
\begin{remark}
Suppose that $B = \setof{T^{j-1}\vec v, \ldots, \vec v}$ is such a \emph{chain}, as well as a basis for $V$, then
\begin{align}
[T]_B &= \bmatr{
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
}
\end{align}
This is called a \emph{Jordan Block}
\end{remark}
\begin{theorem}
Let $\setof{\vec v_1,\ldots,\vec v_k}$ be a set of vectors with corresponding \emph{chains} for each $\vec v_i$,
$\setof{T^{p_i-1}\vec v_i,\ldots,\vec v_i}$. If $\setof{T^{p_1-1}\vec v_1,\ldots,T^{p_k-1}\vec v_k}$
is linearly independent then
\begin{align}
B &= \bigcup_{i=1}^k\setof{T^{p_i-1}\vec v_i,\ldots,\vec v_i}
\end{align}
is also linearly independent.
\end{theorem}
\begin{proof}
We proceed by induction on $\abs{B}$. If $\abs{B} = 1$ the result is trivial.
Then if $\abs{B} = n$, without loss of generality suppose that $V = \spn B$ by considering the restriction of $T$ onto $\spn B$.
Then note that $T^{p_i}\vec v_i = \vec 0$ for all $i$ by definition of a \emph{chain}.
Let $W = \spn B'$ where $B' = B \setminus \setof{\vec v_1,\ldots,\vec v_k}$. Then $W = \im T$ and is $T$-invariant.
Thus $T\big\rvert_{W} : W \to W$ is well defined, so $B'$ is linearly independent by the inductive hypothesis, giving us $\dim W = n - k$.
However $\dim V \le n$ so $\nul T \le k$. But since $\setof{T^{p_1-1}\vec v_1,\ldots,T^{p_k-1}\vec v_k}$ is linearly independent and each $T^{p_i}\vec v_i = \vec 0$,
we have that $\nul T = k$, so $\dim V = n$ and thus $B$ is linearly independent.
\end{proof}