-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04.tex
173 lines (163 loc) · 7.77 KB
/
04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
\chapter{September 29 - October 4}
\section{Orthogonal Matrices}
Let $T : \R^n \to \R^n$ be an orthogonal linear transformation:
\begin{definition}
We say $B$ is an \emph{eigenbasis} for $T$ if $B$ is an orthonormal basis of eigenvectors of $T$.
\end{definition}
\begin{remark}
If $n=1$, $T$ is one of the following:
\begin{align*}\bmatr{1} & & \bmatr{-1}\end{align*}
\end{remark}
\begin{remark}
If $n=2$, and $A$ is the matrix for $T$, $A$ must be a real matrix satisfying:
$$A\transpose{A} = \transpose{A}A = I$$
and since $\setof{(1,0), (0,1)}$ is an orthonormal basis we must have:
$$\norm{A\pmatr{1 \\ 0}} = \norm{A\pmatr{0 \\ 1}} = 1$$
thus $A$ must be of the following form for some $\theta \in [0,2\pi)$:
$$A = \pmatr{
\cos \theta & \pm \sin \theta \\
\sin \theta & \mp \cos \theta
}$$
\end{remark}
\begin{remark}
If $n=2$, by lifting $T$ to being a unitary transformation $\C^n \to \C^n$,
we can distinguish between rotations and reflections from the eigenvectors and eigenvalues of $A$.
We know the eigenvalues must be complex numbers of length 1, so if they are real, they are $\pm 1$.
So let $A$ be the matrix of $T$ under an eigenbasis, it must be of the form:
\begin{center}
\begin{tabular}{c c c}
$\bmatr{
\pm 1 & 0 \\
0 & \pm 1
}$ & or & $\bmatr{
\pm 1 & 0 \\
0 & \mp 1
}$ \\
rotation & & reflection
\end{tabular}
\end{center}
Otherwise, if the eigenvalues are not real, they are of the form $\cos \theta + i \sin \theta$ for some $\theta \in [0,2\pi)$
Matrices of the form:
$$A = \pmatr{\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta}$$
have eigenvalues $\cos \theta \pm i \sin \theta$ and are rotations.
\end{remark}
\begin{remark}
An orthogonal 2x2 matrix can be the composition of a rotation and a reflection.
\end{remark}
\begin{theorem}
Let $A$ be a real, orthogonal, $n \times n$ matrix. Then $A$ is block diagonal with blocks of size $0$ or $1$.
\end{theorem}
\begin{proof}
Lift $A$ to a $n \times n$ complex, unitary matrix. Then, since the entries are real
$$A\vec x = \lambda \vec x \text{ for } \vec x \ne 0 \implies A\vec x = \conj{\lambda}\conj{\vec x}$$
Thus non-real eigenvalues come in conjugate pairs. Since $A$ is unitary as a complex matrix,
we can find an \emph{eigenbasis} $B$ of $\C^n$ for $A$. Then consider an arbitrary pair of eigenvalues $\vec v$ and $\vec w = \conj{\vec v}$.
We want to find two real vectors $\vec x, \vec y \in \R^n$ such that $\spanof{\vec x, \vec y} = \spanof{\vec v, \vec w}$ over $\C$.
So define
\begin{align}
\vec x &= \vec v + \vec w & &(= 2\Re(\vec v)) \\
\vec y &= i\vec v + i\vec w & &(= -2\Im(\vec v))
\end{align}
Clearly, by definition, $\vec x, \vec y \in \spanof{\vec v,\vec w}$, and furthermore we have:
\begin{align}
\vec v &= \frac{1}{2i}\paren{i\vec x + \vec y} \\
\vec w &= \frac{1}{2i}\paren{i\vec x - \vec y} \\
\end{align}
Thus $\vec w, \vec w \in \spanof{\vec v,\vec w}$. Applying Gram-Schmidt allows us to turn $\setof{\vec x, \vec y}$
into a real orthonormal basis of $\spanof{\vec v, \vec w}$. Doing this for every conjugate pair of non-real $\vec v_i \in B$
gives us a new, real orthonormal basis $B'$ such that:
$$[A]_{b'} = \pmatr{
(2\times 2) & 0 & \ldots & 0 \\
0 & (2 \times 2) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & (1\times 1)
}$$
where each block is also orthogonal matrix.
\end{proof}
\begin{remark}
This means that any orthogonal transformation $T$, when viewed under the right basis,
is a collection of pairwise orthogonal rotations ($2 \times 2$ blocks) together with some fixed and reflected lines ($\pm1$ eigenvalues).
\end{remark}
\begin{thmexample}
In $\R^3$, an orthogonal matrix $A$ may look like:
$$A = \bmatr{
\cos \frac{\pi}3 & -\sin \frac{\pi}3 & 0 \\
\sin \frac{\pi}3 & \cos \frac{\pi}3 & 0 \\
0 & 0 & 1
}$$
\end{thmexample}
\section{Rigid Motions}
\begin{definition}
A \emph{rigid motion} is a function $f : \R^n \to \R^n$ such that
$$\norm{\vec x - \vec y} = \norm{f(\vec x) - f(\vec y)} \text{ for all } \vec x, \vec y \in \R^n$$
That is, $f$ preserves distances.
\end{definition}
\begin{defexample}
A translation $\setof{ \vec x \mapsto \vec x + \vec a }$ is a \emph{rigid motion}
\end{defexample}
\begin{defexample}
An orthogonal linear transformation is a \emph{rigid motion}
\end{defexample}
\begin{theorem}
Any \emph{rigid motion} $f : \R^n \to \R^n$ can be written uniquely as
$$f = g \circ T$$
where $g$ is a translation and $T$ is an orthogonal linear transformation
\end{theorem}
\begin{proof}
Define $T : \R^n \to \R^n$ by
$$T(\vec x) = f(\vec x) - f(\vec 0)$$
$T$ is clearly a \emph{rigid motion}, and $T(\vec 0) = f(\vec 0) - f(\vec 0) = \vec 0$.
Also $f = g \circ T$ where $g$ is the translation $g(\vec x) = \vec x + f(\vec 0)$.
We will prove that $T$ is linear.
First observe that, for any $\vec x \in \R^n$
$$\norm{T \vec x} = \norm{T \vec x - T \vec 0} = \norm{\vec x - \vec 0} = \norm{\vec x}$$
Next we will show that, for any $\vec x, \vec y \in \R^n$
$$\inp{T\vec x}{T\vec y} = \inp{\vec x}{\vec y}$$
this is true because
\begin{align}
\norm{T\vec x - T\vec y}^2
&= \inp{T\vec x - T\vec y}{T \vec x - T \vec y} \\
&= \inp{T \vec x}{T \vec x} - \inp{T \vec x}{T \vec y} - \inp{T \vec y}{T \vec x} + \inp{T\vec y}{T \vec y} \\
&= \norm{T\vec x}^2 + \norm{T \vec y}^2 - 2\inp{T \vec x}{T \vec y}
&= \norm{\vec x}^2 + \norm{\vec y}^2 - 2\inp{T \vec x}{T \vec y}
\end{align}
but also
\begin{align}
\norm{T \vec x - T\vec y}^2
&= \norm{\vec x - \vec y}^2 \\
&= \norm{\vec x}^2 + \norm{\vec y}^2 - 2\inp{\vec x}{T \vec y}
\end{align}
subtracting these two equations from each other we obtain
$$\inp{T \vec x}{T \vec y} = \inp{\vec x}{\vec y}$$
Using this fact we can show the two properties of linearity:
\begin{enumerate}[i.]
\item For any $a \in \R$, $\vec x \in \R^n$:
\begin{align}
\norm{T(a \vec x) - aT(\vec x)}^2
&= \norm{T(a\vec x)}^2 + \norm{aT(\vec x)}^2 - 2\inp{T(a \vec x)}{aT(\vec x)} \\
&= \norm{a\vec x}^2 + a^2\norm{\vec x}^2 - 2a\inp{a \vec x}{\vec x} \\
&= 2a^2\norm{\vec x}^2 - 2a^2\norm{\vec x}^2 = 0
\end{align}
Thus, by positive definiteness of the norm $T(a\vec x) = aT(\vec x)$.
\item For any $\vec x, \vec y \in \R^n$:
\begin{align}
\norm{T(\vec x + \vec y) - T(\vec x) - T(\vec y)}^2
&= \norm{T(\vec x + \vec y)}^2 + \norm{T(\vec x)}^2 + \norm{T(\vec y)}^2 \\
&\phantom{=} - 2\inp{T(\vec x + \vec y)}{T(\vec x)} - 2\inp{T(\vec x + \vec y)}{T(\vec y)} \notag \\
&\phantom{=} + 2\inp{T(\vec x)}{T(\vec y)} \notag \\
&= \norm{\vec x + \vec y}^2 + \norm{\vec x}^2 + \norm{\vec y}^2 \\
&\phantom{=} -2\inp{\vec x + \vec y}{\vec x} - 2\inp{\vec x + \vec y}{\vec y} + 2\inp{\vec x}{\vec y} \notag \\
&= \norm{\vec x}^2 + \norm{\vec y}^2 + 2\inp{\vec x}{\vec y} -\norm{\vec x + \vec y}^2 = 0
\end{align}
Thus, by positive definiteness of the norm $T(\vec x + \vec y) = T(\vec x) + T(\vec y)$.
\end{enumerate}
Thus $T$ is a linear \emph{rigid motion}, so $T$ is orthogonal. It remains only to be shown that $f = g \circ T$ is unique.
Suppose $f = g' \circ T'$ for a translation $g'$ and orthogonal transformation $T'$, then:
\begin{align}
f(\vec 0) &= (g' \circ T') \vec 0 = g'(\vec 0) \\
&= (g \circ T) \vec 0 = g(\vec 0)
\end{align}
Thus $g(\vec x) = g'(\vec x) = \vec x + f(\vec 0)$. But then
$$T'\vec x = \paren{g^{-1} \circ f}\vec x = f(\vec x) - f(\vec 0) = T\vec x$$
so $g' = g$ and $T' = T$ as required for uniqueness.
\end{proof}