-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemporal_model_test.py
211 lines (179 loc) · 6.13 KB
/
temporal_model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
## Imports and set-up
import datetime as dt
import os
import time
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import numpyro
import numpyro.distributions as dist
import pandas as pd
import seaborn as sns
import sklearn
import torch
from IPython.core.display import HTML, display
from jax import lax, random, vmap
from jax.scipy.special import logsumexp
from numpyro import handlers, optim
from numpyro.infer import ELBO, MCMC, NUTS, SVI
## Normalize dataset
from sklearn.preprocessing import StandardScaler
from tools import *
numpyro.set_host_device_count(4)
## Function definitions
@logger
def select_meter(df, meter=0): # Electricity = 0
return df[df.meter == 0].drop(columns=["meter"])
@logger
def drop_outliers(df, threshold=5000): # does this threshold makes sense?
return df[df.meter_reading < threshold]
@logger
def to_datetime(df):
df.timestamp = pd.to_datetime(df.timestamp)
return df
def compute_error(trues, predicted):
corr = np.corrcoef(predicted, trues)[0, 1]
mae = np.mean(np.abs(predicted - trues))
rae = np.sum(np.abs(predicted - trues)) / np.sum(
np.abs(trues - np.mean(trues)))
rmse = np.sqrt(np.mean((predicted - trues)**2))
r2 = max(
0, 1 - np.sum((trues - predicted)**2) / np.sum(
(trues - np.mean(trues))**2))
return corr, mae, rae, rmse, r2
## Load Dataset
df_meta_raw = pd.read_csv("2_Data/building_metadata.csv")
df_raw = pd.read_csv("2_Data/train.csv")
df_weather_raw = pd.read_csv("2_Data/weather_train.csv")
df = (
df_raw.pipe(start_pipeline).pipe(reduce_mem_usage).pipe(
select_meter) # only electricity
.pipe(drop_outliers
) # check this threshold, we haven't done any visual check
.pipe(to_datetime))
df_meta = df_meta_raw.pipe(start_pipeline).pipe(reduce_mem_usage)
df_weather = (df_weather_raw.pipe(start_pipeline).pipe(reduce_mem_usage).pipe(
to_datetime))
## Filter raw datasets to include only households
df_meta = df_meta[df_meta.primary_use.eq("Lodging/residential")]
hh_id = df_meta.building_id.unique()
df = df[df.building_id.isin(hh_id)]
hh_id2 = df.building_id.unique(
) # repeat because 2 ids are missing from df_meta
df_meta = df_meta[df_meta.building_id.isin(hh_id2)]
hh_site_id = df_meta.site_id.unique()
df_weather = df_weather[df_weather.site_id.isin(hh_site_id)]
## Keep weather feautures if <10% is nan
df_weather = df_weather.loc[:, df_weather.isna().mean() < 0.2]
df_weather = df_weather.dropna()
## keep one area for now
df_weather = df_weather[df_weather.site_id == 0]
df_meta = df_meta[df_meta.site_id == 0]
df = df[df.building_id.isin(df_meta.building_id)]
## join datasets
df = df.set_index("building_id").join(df_meta.set_index("building_id"),
how="inner")
df = df.reset_index() # to keep building_id
df = df.set_index("timestamp").merge(df_weather.set_index("timestamp"),
on=["site_id", "timestamp"],
how="left")
## keep one household for now
df = df[df.building_id == 100]
df = df[["wind_speed", "air_temperature", "dew_temperature",
"meter_reading"]].dropna()
## Create Dataset
X = df[["wind_speed", "air_temperature", "dew_temperature"]].values
y = df.meter_reading.values
## In this particular example before idx 4000 there are no measurements
X = X[4000:, :]
y = y[4000:]
## Normalize
x_scaler = StandardScaler().fit(X)
X = x_scaler.transform(X)
y_m = jnp.mean(y)
y_std = jnp.std(y)
y = (y - y_m) / y_std
## Undersample
X = X[::12]
y = y[::12]
## Model Functions
def f(carry, inputs):
x_prev, noise_t = inputs
beta, eta, z_prev, tau = carry
z_t = beta * z_prev + jnp.dot(x_prev, eta) + tau * noise_t
z_prev = z_t
return (beta, eta, z_prev, tau), z_t
def model(T, T_forecast, X, obs=None):
"""
Define priors over delta, tau, noises, sigma, z_prev, eta
"""
tau = numpyro.sample("tau", dist.HalfCauchy(10.0))
noises = numpyro.sample(
"noises",
dist.Normal(jnp.zeros(X.shape[0]), 5.0 * jnp.ones(X.shape[0])),
)
sigma = numpyro.sample("sigma", dist.HalfCauchy(scale=5.0))
delta = numpyro.sample("delta", dist.Normal(0, 5.0))
z_prev = numpyro.sample("z_prev", dist.Normal(0, 3.0))
eta = numpyro.sample(
"eta",
dist.Normal(jnp.zeros(X.shape[1]), 5.0 * jnp.ones(X.shape[1])),
)
""" Propagate the dynamics forward using jax.lax.scan
"""
carry = (delta, eta, z_prev, tau)
z_collection = [z_prev]
carry, zs_exp = lax.scan(
f=f,
init=carry,
xs=(X, noises),
)
z_collection = jnp.concatenate((jnp.array(z_collection), zs_exp), axis=0)
""" Sample the observed_y (y_obs) and predicted_y (y_pred) - note that you don't need a pyro.plate!
"""
numpyro.sample("y_obs", dist.Normal(z_collection[:T], sigma), obs=obs)
numpyro.sample("y_pred", dist.Normal(z_collection[T:], sigma), obs=None)
return z_collection
## Test model
# TODO check problem with jax scan length
rng_key = random.PRNGKey(0)
rng_key, rng_key_ = random.split(rng_key)
kernel = NUTS(model, max_tree_depth=8, step_size=5e-3)
mcmc = MCMC(kernel, num_warmup=2000, num_samples=2000, num_chains=4)
##
n_test = 50
mcmc.run(random.PRNGKey(2),
T=len(X) - n_test,
T_forecast=n_test,
X=X,
obs=y[:-n_test])
mcmc.print_summary()
##
samples = mcmc.get_samples()
## Generate Predictions
hmc_samples = {k: v for k, v in mcmc.get_samples().items()}
q = hmc_samples["y_pred"]
q_mean = q.mean(axis=0).reshape(-1, )
q_std = q.std(axis=0).reshape(-1, )
y_pred_025 = q_mean - 1.96 * q_std
y_pred_975 = q_mean + 1.96 * q_std
y_pred_mean = q_mean
## Plot results
# plt.plot(ix_train[-20:], y_train[-20:, 0], "b-")
# plt.plot(ix_test, y[:], "bx")
ix_train = range(len(y) - n_test)
ix_test = range(len(y) - n_test - 1, len(y))
plt.figure(figsize=(10, 6))
plt.plot(ix_train, y[:-n_test])
plt.plot(ix_test, y_pred_mean, "r-")
plt.plot(ix_test, y_pred_025, "r--")
plt.plot(ix_test, y_pred_975, "r--")
plt.fill_between(ix_test, y_pred_025, y_pred_975, alpha=0.3)
plt.legend([
"true (train)",
"true (test)",
"forecast",
"forecast + stddev",
"forecast - stddev",
])
plt.show()