-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTrainer.py
248 lines (193 loc) · 10.2 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch.nn as nn
import torch.optim as optim
import time
import pickle
import traceback
import sys
sys.path.append('..') # import the upper directory of the current file into the search path
from SSIN.networks.Models import SpaFormer
from SSIN.dataset_collator.create_data import *
from SSIN.utils.utils import *
from SSIN.networks.Optim import ScheduledOptim
import SSIN.utils.config as cfg
# This version supports the mini-batch training
class MaskedTrainer:
def __init__(self, args, global_step=0, out_path=None, init_training=True):
self.args = args
self.global_step = global_step
self.out_path = out_path
# load data
self.all_seq_data, self.invalid_masks_data, self.r_pos_mat_data, self.adj_attn_mask = self.load_train_data()
cfg.d_feat, cfg.d_pos = self.all_seq_data[0].shape[-1], self.r_pos_mat_data[0].shape[-1]
# load model
self.model = self.load_model()
if init_training:
print("Load data and build model. Done!")
# set loss function and optimizer
self.criterion = nn.MSELoss(reduction="none")
self.optimizer = ScheduledOptim(optim.Adam(self.model.parameters(), betas=(0.9, 0.98), eps=1e-09),
args.lr_mul, args.d_model, args.n_warmup_steps)
self.num_params()
def load_train_data(self):
# load data
with open(self.args.train_data_path, "rb") as fp:
data_dict = pickle.load(fp)
all_seq_data = data_dict["train_data"][:, :, 0:1]
invalid_masks_data = data_dict["invalid_masks"]
r_pos_mat_data = data_dict["r_pos_mat"]
if "adj_attn_mask" in data_dict.keys():
adj_attn_mask = data_dict["adj_attn_mask"]
else:
adj_attn_mask = None
return all_seq_data, invalid_masks_data, r_pos_mat_data, adj_attn_mask
def load_test_data_generator(self):
# load data
with open(self.args.test_data_path, "rb") as fp:
data_dict = pickle.load(fp)
all_seq_data = data_dict["test_data"][:, :, 0:1]
r_pos_mat = data_dict["r_pos_mat"]
invalid_masks = data_dict["invalid_masks"]
test_masks = data_dict["test_masks"]
all_timestamps = data_dict["timestamps"]
if "adj_attn_mask" in data_dict.keys():
adj_attn_mask = data_dict["adj_attn_mask"]
else:
adj_attn_mask = None
test_data_generator = create_test_data(all_seq_data, invalid_masks, test_masks, all_timestamps, adj_attn_mask)
return r_pos_mat, test_data_generator
def load_model(self):
if self.args.model_type == "SpaFormer":
model = SpaFormer(cfg.d_feat, cfg.d_pos, self.args.n_layers, self.args.n_head, self.args.d_k, self.args.d_v, self.args.d_model,
self.args.d_inner, self.args.dropout, cfg.scale_emb, return_attns=self.args.return_attns)
else:
raise NotImplementedError("The mode type is not available!")
if self.args.cuda:
model = model.cuda()
return model
def train(self):
self.model.train()
r_pos_mat = torch.FloatTensor(self.r_pos_mat_data).cuda()
training_time = 0
test_time = 0
try:
tot_loss, tot_avg_loss = 0, 0
for epoch in range(1, self.args.epochs+1):
ep_start_time = time.time()
# Dynamic masking: randomly generate masked data for each epoch
train_data_iter = create_train_data(epoch, self.all_seq_data, self.invalid_masks_data,
self.args.batch_size, self.args.masked_lm_prob,
times=self.args.mask_time, adj_attn_mask=self.adj_attn_mask)
running_loss, avg_loss = 0, 0
for data in train_data_iter:
self.global_step += 1
# masked_seq, masked_labels: have been seq-wise standardized in train_data_iter
masked_seq, masked_indexes, masked_labels, masked_label_weights, \
attn_mask = convert_train_data(self.args, data)
# For one timestamp, when owning many zero rainfall values,
# the random masked_seq may be all zeros, then std = 0, then will generate NaN values;
# if the inputs include NaN, skip this input sequence
if torch.isnan(masked_seq).any() or torch.isinf(masked_seq).any() or len(masked_seq) == 0:
continue
# 1. forward the model
self.optimizer.zero_grad()
outputs, _, _ = self.model(masked_seq, r_pos_mat, masked_indexes, attn_mask=attn_mask)
# 2. MSE loss of predicting masked elements
per_example_loss = self.criterion(outputs, masked_labels) # loss for each elements
numerator = torch.sum(per_example_loss.squeeze() * masked_label_weights)
denominator = torch.sum(masked_label_weights) + 1e-10
loss = numerator / denominator
# 3. backward and optimization only in train
loss.backward()
# self.optimizer.step()
self.optimizer.step_and_update_lr()
# loss
# running_loss += loss.item()
tot_loss += loss.item()
tot_avg_loss = tot_loss / self.global_step
# todo: here, do not save the attention list images
ep_end_time = time.time()
ep_cost_time = ep_end_time - ep_start_time
training_time += ep_cost_time
# save model checkpoint for each 10 epochs
if epoch % 10 == 0:
self.save_checkpoint(epoch, self.global_step, self.out_path.checkpoints_path)
test_time = self.test(self.out_path.test_ret_path + f"/test_ret.csv")
except BaseException:
traceback.print_exc()
return training_time, test_time
def test(self, ret_path, model_path=None):
if model_path is not None:
if os.path.exists(model_path):
self.model.load_state_dict(torch.load(model_path))
print(f"Reloaded Model from {model_path}!")
else:
raise FileNotFoundError(f"Can not find model in {model_path}!")
self.model.eval()
r_pos_mat_test, test_data_iter = self.load_test_data_generator()
r_pos_mat_test = torch.FloatTensor(r_pos_mat_test).cuda()
labels_list, preds_list = [], []
timestamp_list, gauge_list = [], []
test_start_time = time.time()
with torch.no_grad():
for data in test_data_iter:
# [tensor, tensor, tensor, numpy, tensor, numpy, numpy]
# tensor: [batch_size=1, seq_len, in_dim], numpy: [seq_len]
# masked_seq: have been standardized in DataLoaderNew
masked_seq, masked_indexes, masked_labels, attn_mask, mean_value, std_value, timestamp = \
convert_test_data(self.args, data)
preds, _, _ = self.model(masked_seq, r_pos_mat_test, masked_indexes, attn_mask=attn_mask)
preds = (preds.squeeze() * std_value) + mean_value # inverse standardization
preds = preds.cpu().numpy().flatten() # flatten to 1D array
labels_list.append(masked_labels.flatten())
preds_list.append(preds)
timestamp_list.append(timestamp.flatten())
test_end_time = time.time()
test_cost_time = test_end_time - test_start_time
save_csv_results(ret_path, timestamp_list, gauge_list, labels_list, preds_list)
print("Save test results. Done!")
return test_cost_time
def num_params(self, print_out=True):
params_requires_grad = filter(lambda p: p.requires_grad, self.model.parameters())
params_requires_grad = sum([np.prod(p.size()) for p in params_requires_grad]) #/ 1_000_000
parameters = sum([np.prod(p.size()) for p in self.model.parameters()]) #/ 1_000_000
if print_out:
print('Trainable total Parameters: %d' % parameters)
print('Trainable requires_grad Parameters: %d' % params_requires_grad)
def save_checkpoint(self, epoch, steps, save_path):
"""
Saving the current MLM model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
# output_path = save_path + f"/checkpoint_{epoch}epoch_{steps}steps.pyt"
output_path = save_path + f"/checkpoint_{epoch}epoch.pyt"
torch.save(self.model.state_dict(), output_path)
print("EP:%d Checkpoint Saved on:" % epoch, output_path)
return output_path
def convert_train_data(args, data):
masked_seq, masked_indexes, masked_labels, masked_label_weights, attn_mask = data
# convert to tensor
masked_seq = torch.FloatTensor(masked_seq)
masked_indexes = torch.LongTensor(masked_indexes)
masked_labels = torch.FloatTensor(masked_labels)
masked_label_weights = torch.FloatTensor(masked_label_weights)
attn_mask = torch.FloatTensor(attn_mask)
if args.cuda:
masked_seq = masked_seq.cuda()
masked_indexes = masked_indexes.cuda()
masked_labels = masked_labels.cuda()
masked_label_weights = masked_label_weights.cuda()
attn_mask = attn_mask.cuda()
return masked_seq, masked_indexes, masked_labels, masked_label_weights, attn_mask
def convert_test_data(args, data):
masked_seq, masked_indexes, masked_labels, attn_mask, mean_value, std_value, timestamp = data
# convert to tensor, batch_size = 1
masked_seq = torch.FloatTensor(masked_seq)
masked_indexes = torch.LongTensor(masked_indexes)
attn_mask = torch.FloatTensor(attn_mask)
if args.cuda:
masked_seq = masked_seq.cuda()
masked_indexes = masked_indexes.cuda()
attn_mask = attn_mask.cuda()
return masked_seq, masked_indexes, masked_labels, attn_mask, mean_value, std_value, timestamp