-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_training.py
111 lines (99 loc) · 3.13 KB
/
mnist_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
train_data = keras.utils.image_dataset_from_directory(
'images',
validation_split=0.1,
seed=1,
labels='inferred',
subset="training",
color_mode='grayscale',
image_size=(28, 28))
validation_data = keras.utils.image_dataset_from_directory(
'images',
validation_split=0.1,
seed=1,
labels='inferred',
subset="validation",
color_mode='grayscale',
image_size=(28, 28))
# print(train_data.class_names)
# print(train_data)
# model = keras.Sequential([
# layers.Input(shape=(28, 28, 1)), # Adjust input size to MNIST
# layers.Conv2D(32, (3, 3), activation='relu'),
# layers.BatchNormalization(),
# layers.MaxPooling2D((2, 2)),
#
# layers.Conv2D(64, (3, 3), activation='relu'),
# layers.BatchNormalization(),
# layers.MaxPooling2D((2, 2)),
#
# layers.Conv2D(128, (3, 3), activation='relu'),
# layers.BatchNormalization(),
# layers.MaxPooling2D((2, 2)),
#
# layers.Flatten(),
# layers.Dense(128, activation='relu'),
# layers.Dropout(0.5),
# layers.Dense(11, activation='softmax') # 10 classes for MNIST + background
# ])
model = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(11, activation="softmax"),
]
)
# model = keras.Sequential([
# # Input layer
# layers.Input(shape=(28, 28, 1)),
#
# # Convolutional layer 1
# layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same'),
# layers.MaxPooling2D(pool_size=(2, 2)),
#
# # Convolutional layer 2
# layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
# layers.MaxPooling2D(pool_size=(2, 2)),
#
# # Convolutional layer 3
# layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
# layers.MaxPooling2D(pool_size=(2, 2)),
#
# # Flatten the feature maps
# layers.Flatten(),
#
# # Fully connected dense layers
# layers.Dense(128, activation='relu'),
# layers.Dropout(0.5), # Dropout for regularization
# layers.Dense(64, activation='relu'),
#
# # Output layer with 11 classes
# layers.Dense(11, activation='softmax')
# ])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy', # Use sparse or categorical crossentropy
metrics=['accuracy']
)
history = model.fit(train_data,epochs = 10, validation_data = validation_data)
model.save("model.keras")
plt.clf()
fig, ax1 = plt.subplots()
plt.plot(history.history['loss'],label="loss")
plt.plot(history.history['val_loss'],label="val loss")
# plt.legend(['loss','accuracy','val_loss','val_accuracy'])
ax2 = ax1.twinx()
ax2.set_ylim(0,1)
plt.plot(history.history['val_accuracy'],label="val accuracy")
plt.plot(history.history['accuracy'],label="accuracy")
plt.legend()
plt.show()