|
| 1 | +# %% |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +from quantumwalks import run_quantum_walk_simulation |
| 5 | +from quantumwalks.discrete_walk import QuantumWalk |
| 6 | +from quantumwalks.utils.operators import create_shift_operators |
| 7 | + |
| 8 | +def create_custom_coin(alpha: float, beta: float, gamma: float) -> np.ndarray: |
| 9 | + """ |
| 10 | + Create a custom coin operator U(α,β,γ) using vectorized operations. |
| 11 | + """ |
| 12 | + return np.array([ |
| 13 | + [np.exp(1j * alpha) * np.cos(beta), -np.exp(-1j * gamma) * np.sin(beta)], |
| 14 | + [np.exp(1j * gamma) * np.sin(beta), np.exp(-1j * alpha) * np.cos(beta)] |
| 15 | + ], dtype=np.complex128) |
| 16 | + |
| 17 | +def calculate_lr_difference_alternating_coins(qw: QuantumWalk, coin_A: np.ndarray, coin_B: np.ndarray) -> np.ndarray: |
| 18 | + """ |
| 19 | + Calculate P_L - P_R for each step of the walk using alternating coins A and B. |
| 20 | + """ |
| 21 | + # Initialize state |
| 22 | + posn0 = np.zeros(qw.P) |
| 23 | + posn0[qw.N] = 1 |
| 24 | + psi = np.kron(posn0, qw.initial_coin_state) |
| 25 | + |
| 26 | + # Pre-allocate arrays |
| 27 | + differences = np.zeros(qw.N + 1) |
| 28 | + positions = np.arange(-qw.N, qw.N + 1) |
| 29 | + |
| 30 | + # Create measurement operators matrix once |
| 31 | + measurement_ops = np.array([ |
| 32 | + np.kron(np.outer(np.eye(qw.P)[i], np.eye(qw.P)[i]), np.eye(2)) |
| 33 | + for i in range(qw.P) |
| 34 | + ]) |
| 35 | + |
| 36 | + # Create shift operators using the utility function |
| 37 | + shift_plus, shift_minus = create_shift_operators(qw.P) |
| 38 | + shift_op = (np.kron(shift_plus, np.outer(qw.coin0, qw.coin0)) + |
| 39 | + np.kron(shift_minus, np.outer(qw.coin1, qw.coin1))) |
| 40 | + |
| 41 | + # Calculate evolution operators for both coins |
| 42 | + U_A = shift_op @ np.kron(np.eye(qw.P), coin_A) |
| 43 | + U_B = shift_op @ np.kron(np.eye(qw.P), coin_B) |
| 44 | + |
| 45 | + # Calculate for each step |
| 46 | + for step in range(qw.N + 1): |
| 47 | + # Vectorized probability calculation |
| 48 | + projections = measurement_ops @ psi |
| 49 | + prob = np.real(np.sum(projections * np.conjugate(projections), axis=1)) |
| 50 | + |
| 51 | + # Vectorized P_L and P_R calculation |
| 52 | + P_L = np.sum(prob[positions < 0]) |
| 53 | + P_R = np.sum(prob[positions >= 0]) |
| 54 | + differences[step] = P_L - P_R |
| 55 | + |
| 56 | + # Evolve state with alternating coin operators |
| 57 | + if step < qw.N: |
| 58 | + if step % 2 == 0: |
| 59 | + psi = U_A @ psi # Apply coin A |
| 60 | + else: |
| 61 | + psi = U_B @ psi # Apply coin B |
| 62 | + |
| 63 | + return differences, prob # Return both differences and final probability distribution |
| 64 | + |
| 65 | +def run_simulation_alternating_coins(steps: int, |
| 66 | + alpha_A: float, beta_A: float, gamma_A: float, |
| 67 | + alpha_B: float, beta_B: float, gamma_B: float): |
| 68 | + """ |
| 69 | + Run simulation with alternating coins A and B. |
| 70 | + """ |
| 71 | + # Create both coin operators |
| 72 | + coin_A = create_custom_coin(alpha_A, beta_A, gamma_A) |
| 73 | + coin_B = create_custom_coin(alpha_B, beta_B, gamma_B) |
| 74 | + initial_state = np.array([1, -1], dtype=np.complex128) / np.sqrt(2) |
| 75 | + |
| 76 | + print(f"Running quantum walk simulation with alternating coins:") |
| 77 | + print(f"Coin A parameters: α={alpha_A:.2f}, β={beta_A:.2f}, γ={gamma_A:.2f}") |
| 78 | + print(f"Coin B parameters: α={alpha_B:.2f}, β={beta_B:.2f}, γ={gamma_B:.2f}") |
| 79 | + |
| 80 | + # Create quantum walk object (using coin_A as default) |
| 81 | + qw = QuantumWalk(steps, initial_state, coin_A) |
| 82 | + |
| 83 | + # Calculate differences and probabilities using alternating coins |
| 84 | + differences, prob = calculate_lr_difference_alternating_coins(qw, coin_A, coin_B) |
| 85 | + |
| 86 | + # Plot results |
| 87 | + plot_results(qw, prob, 0.0, differences, steps) # Using 0.0 as execution time placeholder |
| 88 | + |
| 89 | + return qw, differences, prob |
| 90 | + |
| 91 | +def plot_results(qw: QuantumWalk, prob: np.ndarray, |
| 92 | + exec_time: float, differences: np.ndarray, steps: int): |
| 93 | + """ |
| 94 | + Plot both probability distribution and P_L - P_R differences. |
| 95 | + """ |
| 96 | + # Plot probability distribution |
| 97 | + positions = np.arange(-qw.N, qw.N + 1) |
| 98 | + |
| 99 | + plt.figure(figsize=(12, 8)) |
| 100 | + plt.plot(positions, prob, 'b-', label='Probability', linewidth=1.5) |
| 101 | + plt.plot(positions, prob, 'ro', markersize=4) |
| 102 | + plt.fill_between(positions, prob, alpha=0.3) |
| 103 | + plt.grid(True, alpha=0.3) |
| 104 | + plt.xlabel('Position', fontsize=12) |
| 105 | + plt.ylabel('Probability', fontsize=12) |
| 106 | + plt.title(f'Quantum Walk Distribution after {steps} steps\n(Alternating Coins)', fontsize=14) |
| 107 | + plt.legend() |
| 108 | + plt.tight_layout() |
| 109 | + plt.show() |
| 110 | + |
| 111 | + # Plot P_L - P_R differences |
| 112 | + plt.figure(figsize=(12, 8)) |
| 113 | + x = np.arange(steps + 1) |
| 114 | + plt.plot(x, differences, 'b-', label='P_L - P_R', linewidth=1.5) |
| 115 | + plt.plot(x, differences, 'ro', markersize=4) |
| 116 | + |
| 117 | + # Set y-axis range from -1 to 1 |
| 118 | + plt.ylim(-1, 1) |
| 119 | + |
| 120 | + plt.grid(True, alpha=0.3) |
| 121 | + plt.xlabel('Step', fontsize=12) |
| 122 | + plt.ylabel('P_L - P_R', fontsize=12) |
| 123 | + plt.title('Difference between Left and Right Probabilities\n(Alternating Coins)', fontsize=14) |
| 124 | + plt.legend() |
| 125 | + plt.tight_layout() |
| 126 | + plt.show() |
| 127 | + |
| 128 | + |
| 129 | +# %% |
| 130 | + |
| 131 | +if __name__ == "__main__": |
| 132 | + # Set parameters |
| 133 | + steps = 800 |
| 134 | + |
| 135 | + # Parameters for Coin A |
| 136 | + alpha_A = -51.0/180 * np.pi # Converting to radians |
| 137 | + beta_A = 45.0/180 * np.pi |
| 138 | + gamma_A = 0.0/180 * np.pi |
| 139 | + |
| 140 | + # Parameters for Coin B |
| 141 | + alpha_B = 0.0/180 * np.pi |
| 142 | + beta_B = 88.0/180 * np.pi |
| 143 | + gamma_B = -16.0/180 * np.pi |
| 144 | + |
| 145 | + # Run simulation with alternating coins |
| 146 | + qw, differences, prob = run_simulation_alternating_coins( |
| 147 | + steps, |
| 148 | + alpha_A, beta_A, gamma_A, |
| 149 | + alpha_B, beta_B, gamma_B |
| 150 | + ) |
| 151 | + |
| 152 | + # Print some statistics |
| 153 | + positions = np.arange(-qw.N, qw.N + 1) |
| 154 | + mean_pos = np.average(positions, weights=prob) |
| 155 | + std_dev = np.sqrt(np.average((positions - mean_pos)**2, weights=prob)) |
| 156 | + |
| 157 | + print("\nFinal Statistics:") |
| 158 | + print(f"Mean Position: {mean_pos:.4f}") |
| 159 | + print(f"Standard Deviation: {std_dev:.4f}") |
| 160 | + print(f"Max Probability: {np.max(prob):.4f}") |
| 161 | + |
| 162 | +# %% |
| 163 | + |
| 164 | + |
| 165 | + |
0 commit comments