-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_unpaired.py
139 lines (110 loc) · 4.86 KB
/
test_unpaired.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from os.path import basename
import math
import argparse
import random
import logging
import cv2
import torch
import torchvision.transforms.functional as TF
from PIL import Image
import options.options as option
from utils import util
import torchvision.transforms as T
import model as Model
import core.logger as Logger
import core.metrics as Metrics
import natsort
from torchvision import transforms
transform = transforms.Lambda(lambda t: (t * 2) - 1)
def main():
#### options
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, help='Path to option YMAL file.',
default='./config/dataset.yml') #
parser.add_argument('--input', type=str, help='testing the unpaired image',
default='images/unpaired/')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--tfboard', action='store_true')
parser.add_argument('-c', '--config', type=str, default='config/test_unpaired.json',
help='JSON file for configuration')
parser.add_argument('-p', '--phase', type=str, choices=['train', 'val'],
help='Run either train(training) or val(generation)', default='train')
parser.add_argument('-gpu', '--gpu_ids', type=str, default="0")
parser.add_argument('-debug', '-d', action='store_true')
parser.add_argument('-enable_wandb', action='store_true')
parser.add_argument('-log_wandb_ckpt', action='store_true')
parser.add_argument('-log_eval', action='store_true')
# parse configs
args = parser.parse_args()
opt = Logger.parse(args)
# Convert to NoneDict, which return None for missing key.
opt = Logger.dict_to_nonedict(opt)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
opt['phase'] = 'test'
#### distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
# config loggers. Before it, the log will not work
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# model
diffusion = Model.create_model(opt)
logger.info('Initial Model Finished')
result_path = '{}'.format(opt['path']['results'])
os.makedirs(result_path, exist_ok=True)
diffusion.set_new_noise_schedule(
opt['model']['beta_schedule']['val'], schedule_phase='val')
InputPath = args.input
Image_names = natsort.natsorted(os.listdir(InputPath), alg=natsort.ns.PATH)
for i in range(len(Image_names)):
path = InputPath + Image_names[i]
raw_img = Image.open(path).convert('RGB')
img_w = raw_img.size[0]
img_h = raw_img.size[1]
raw_img = transforms.Resize((img_h // 16 * 16, img_w // 16 * 16))(raw_img)
raw_img = transform(TF.to_tensor(raw_img)).unsqueeze(0).cuda()
val_data = {}
val_data['LQ'] = raw_img
val_data['GT'] = raw_img
diffusion.feed_data(val_data)
diffusion.test(continous=False)
visuals = diffusion.get_current_visuals()
normal_img = Metrics.tensor2img(visuals['HQ'])
normal_img = cv2.resize(normal_img, (img_w, img_h))
ll_img = Metrics.tensor2img(visuals['LQ'])
llie_img_mode = 'single'
if llie_img_mode == 'single':
# util.save_img(
# ll_img, '{}/{}_input.png'.format(result_path, idx))
util.save_img(
normal_img, '{}/{}_normal.png'.format(result_path, i+1))
else:
util.save_img(
normal_img, '{}/{}_{}_normal_process.png'.format(result_path, i))
util.save_img(
Metrics.tensor2img(visuals['HQ'][-1]), '{}/{}_normal.png'.format(result_path, i))
normal_img = Metrics.tensor2img(visuals['HQ'][-1])
if __name__ == '__main__':
main()