-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathminPathSum.py
43 lines (36 loc) · 1.19 KB
/
minPathSum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding:utf-8 -*-
"""
https://leetcode-cn.com/problems/minimum-path-sum
给定一个包含非负整数的 m x n 网格,
请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[[1,3,1],
[1,5,1],
[4,2,1]]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
"""
from typing import List
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
"""
提示:
令 dp[i][j] 为从 grid[0][0] 到 grid[i][j] 路径上的数字总和最小的值。
则状态转移方程为:
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] if i > 0 and j > 0
"""
m = len(grid)
n = len(grid[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = grid[0][0]
# 设置边界
for i in range(1, m):
dp[i][0] = dp[i-1][0] + grid[i][0]
for i in range(1, n):
dp[0][i] = dp[0][i-1] + grid[0][i]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
return dp[-1][-1]