-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_rsf.py
53 lines (40 loc) · 1.62 KB
/
demo_rsf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from base.rsf import *
from lifelines import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
import time
from base.rsf.RandomSurvivalForest import RandomSurvivalForest
from base.rsf.scoring import concordance_index
def load_gbsg2():
"""
:return:
"""
gbsg2 = datasets.load_gbsg2()
gbsg2_data = gbsg2[['age', 'tsize', 'pnodes', 'progrec', 'estrec']]
gbsg2_horTh = pd.get_dummies(gbsg2.horTh, prefix='horTh')
gbsg2_menostat = pd.get_dummies(gbsg2.menostat, prefix='menostat')
gbsg2_tgrade = pd.get_dummies(gbsg2.tgrade, prefix='tgrade')
gbsg2_data = pd.concat([gbsg2_data, gbsg2_horTh, gbsg2_menostat, gbsg2_tgrade], axis=1)
gbsg2_target = gbsg2[['time', 'cens']]
return gbsg2_data, gbsg2_target, "time", "cens"
def load_rossi():
"""
:return:
"""
rossi = datasets.load_rossi()
# Attention: duration column must be index 0, event column index 1 in y
return rossi.drop(["arrest", "week"], axis=1), rossi[["arrest", "week"]], "arrest", "week"
if __name__ == "__main__":
X, y, duration, event = load_gbsg2()
# X, y, duration, event = load_rossi()
X, X_test, y, y_test = train_test_split(X, y, test_size=0.25, random_state=10)
# print("RSF")
start_time = time.time()
rsf = RandomSurvivalForest(n_estimators=20, n_jobs=-1, min_leaf=10)
# print("X", X, "y", y)
rsf = rsf.fit(X, y)
print("--- %s seconds ---" % (time.time() - start_time))
y_pred = rsf.predict(X_test)
# print(y_pred)
c_val = concordance_index(y_time=y_test[duration], y_pred=y_pred, y_event=y_test[event])
print("C-index", round(c_val, 3))