-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_8_7_2019.py
26 lines (23 loc) · 1.38 KB
/
test_8_7_2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from LR_model_all import LR_model_all
import pandas as pd
import os
files = os.listdir("new_sample_7_26/files_new/")
col_names = ["filename", "p_or_not_tn", "p_or_not_fp", "p_or_not_fn", "p_or_not_tp",
"p_or_not_sensitivity", "p_or_not_specificity",
"c_or_not_tn", "c_or_not_fp", "c_or_not_fn", "c_or_not_tp",
"c_or_not_sensitivity", "c_or_not_specificity"]
df = pd.DataFrame(columns = col_names)
count = 0
for i in files:
print(i)
data = pd.read_csv("new_sample_7_26/files_new/"+ i, sep="\t")
if len(data) > 100:
if set(["染色体位置","HGVS","REVEL/M-CAP",
"SIFT score","Polyphen2 score","表型相关度",
"Clinvar","HGMD","ExonicFunc_refGene","系统结论","FinalResult","user_confirm"]).issubset(data.columns):
dir = "new_sample_7_26/files_new/" + i
p_or_not_tn, p_or_not_fp, p_or_not_fn, p_or_not_tp,p_or_not_sensitivity, p_or_not_specificity, c_or_not_tn, c_or_not_fp, c_or_not_fn, c_or_not_tp,c_or_not_sensitivity, c_or_not_specificity = LR_model_all(dir)
df.loc[len(df)] = [i, p_or_not_tn, p_or_not_fp, p_or_not_fn, p_or_not_tp,p_or_not_sensitivity, p_or_not_specificity,c_or_not_tn, c_or_not_fp, c_or_not_fn, c_or_not_tp,c_or_not_sensitivity, c_or_not_specificity]
count = count+1
print(count/len(files))
df.to_csv("test_result_8_7_2019", sep='\t')