@@ -30,26 +30,26 @@ def calc_h_and_J(qhd):
30
30
def run_test (model , tol = 1e-3 ):
31
31
data_vector = np .zeros (16 )
32
32
# # Run QHD with post-processor = Ipopt
33
- # response = model.optimize(verbose=1)
34
- # qhd_ipopt_success_prob = response.get_success_probability()
35
- # data_vector[0] = model.info["average_qpu_time"]
36
- # data_vector[1] = model.info["post_processing_time"] / len(model.info["sample_times"])
37
- # data_vector[12] = statistics.stdev(model.info["sample_times"][1:])
38
- # data_vector[2] = qhd_ipopt_success_prob
39
- # data_vector[3] = TTS((data_vector[0] + data_vector[1]), data_vector[2])
40
- # best = response.minimum
41
- # # Same QHD samples post-processed by TNC
42
- # qhd_samples = [sample for sample in response.coarse_samples if sample is not None]
43
- # response = model.classically_optimize(solver="TNC", initial_guess=qhd_samples)
44
- #
45
- # qhd_tnc_success_prob = response.get_success_probability(tol=tol, minimum=best)
46
- #
47
- #
48
- # data_vector[4] = model.info["average_qpu_time"]
49
- # data_vector[5] = model.info["refining_time"] / len(model.info["sample_times"])
50
- # data_vector[13] = statistics.stdev(model.info["sample_times"][1:])
51
- # data_vector[6] = qhd_tnc_success_prob
52
- # data_vector[7] = TTS((data_vector[4] + data_vector[5]), data_vector[6])
33
+ response = model .optimize (verbose = 1 )
34
+ qhd_ipopt_success_prob = response .get_success_probability ()
35
+ data_vector [0 ] = model .info ["average_qpu_time" ]
36
+ data_vector [1 ] = model .info ["post_processing_time" ] / len (model .info ["sample_times" ])
37
+ data_vector [12 ] = statistics .stdev (model .info ["sample_times" ][1 :])
38
+ data_vector [2 ] = qhd_ipopt_success_prob
39
+ data_vector [3 ] = TTS ((data_vector [0 ] + data_vector [1 ]), data_vector [2 ])
40
+ best = response .minimum
41
+ # Same QHD samples post-processed by TNC
42
+ qhd_samples = [sample for sample in response .coarse_samples if sample is not None ]
43
+ response = model .classically_optimize (solver = "TNC" , initial_guess = qhd_samples )
44
+
45
+ qhd_tnc_success_prob = response .get_success_probability (tol = tol , minimum = best )
46
+
47
+
48
+ data_vector [4 ] = model .info ["average_qpu_time" ]
49
+ data_vector [5 ] = model .info ["refining_time" ] / len (model .info ["sample_times" ])
50
+ data_vector [13 ] = statistics .stdev (model .info ["sample_times" ][1 :])
51
+ data_vector [6 ] = qhd_tnc_success_prob
52
+ data_vector [7 ] = TTS ((data_vector [4 ] + data_vector [5 ]), data_vector [6 ])
53
53
54
54
# Run Ipopt with random init
55
55
response = model .classically_optimize (solver = "IPOPT" , num_shots = model .shots )
0 commit comments