forked from taconite/MetaAvatar-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_avatar.py
593 lines (479 loc) · 26.1 KB
/
fine_tune_avatar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
import torch
import trimesh
import argparse
import time
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np
from depth2mesh import config
from depth2mesh.checkpoints import CheckpointIO
from depth2mesh.metaavatar import models
from depth2mesh.utils.logs import create_logger
parser = argparse.ArgumentParser(
description='Do fine-tuning on validation set, then extract meshes on novel poses.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
parser.add_argument('--overwrite', action='store_true',
help='Whether to overwrite already generated results')
parser.add_argument('--subsampling-rate', type=int, default=1,
help='subsampling rate for sampling training sequences')
parser.add_argument('--test-start-offset', type=int, default=0,
help='start offset testing sequences')
parser.add_argument('--test-subsampling-rate', type=int, default=1,
help='subsampling rate for sampling testing sequences')
parser.add_argument('--epochs-per-run', type=int, default=-1,
help='Number of epochs to train before restart.')
parser.add_argument('--optim-epochs', type=int, default=-1,
help='Number of total epochs to train.')
parser.add_argument('--num-workers', type=int, default=8,
help='Number of workers to use for train and val loaders.')
parser.add_argument('--interpolation', action='store_true', help='Interpolation task.')
parser.add_argument('--high-res', action='store_true', help='Run marching cubes at high resolution (512^3).')
# parser.add_argument('--canonical', action='store_true', help='Extract canonical meshes only (in the original canonical space).')
parser.add_argument('--subject-idx', type=int, default=-1,
help='Which subject in the validation set to train (and optionally test)')
parser.add_argument('--test-subject-idx', type=int, default=-1,
help='Which subject in the validation set to test. By default it is the same subject for train.')
parser.add_argument('--train-cloth-split', type=str, metavar='LIST', required=True,
help='Which cloth-types in the validation set to train on')
parser.add_argument('--train-act-split', type=str, metavar='LIST', required=True,
help='Which actions in the validation set to train on')
parser.add_argument('--test-cloth-split', type=str, metavar='LIST', default='',
help='Which cloth-types in the validation set to train on')
parser.add_argument('--test-act-split', type=str, metavar='LIST', required=True,
help='Which actions in the validation set to train on')
parser.add_argument('--exp-suffix', type=str, default='',
help='User defined suffix to distinguish different test runs.')
def get_skinning_weights(pts, src, ref_W):
"""
Finds skinning weights of pts on src via barycentric interpolation.
"""
closest_face, closest_points = src.closest_faces_and_points(pts)
vert_ids, bary_coords = src.barycentric_coordinates_for_points(closest_points, closest_face.astype('int32'))
pts_W = (ref_W[vert_ids] * bary_coords[..., np.newaxis]).sum(axis=1)
return pts_W
def compute_sdf_loss(model_output, gt):
loss_dict = sdf_loss(model_output, gt)
total_loss = torch.zeros(1, device=device)
for loss_name, loss in loss_dict.items():
total_loss += loss.mean()
return total_loss, loss_dict
def mask_by_reproj_dist(p, p_rp, mode='mean', value=-1):
if mode == 'mean':
thr = torch.norm(p - p_rp, dim=-1).mean(-1, keepdim=True)
else:
thr = value
mask = (torch.norm(p - p_rp, dim=-1) < thr).unsqueeze(-1)
return mask
def normalize_canonical_points(pts, coord_min, coord_max, center):
pts -= center
padding = (coord_max - coord_min) * 0.05
pts = (pts - coord_min + padding) / (coord_max - coord_min) / 1.1
pts -= 0.5
pts *= 2.
return pts
def get_transforms_02v(Jtr):
from scipy.spatial.transform import Rotation as R
rot45p = R.from_euler('z', 45, degrees=True).as_matrix()
rot45n = R.from_euler('z', -45, degrees=True).as_matrix()
# Specify the bone transformations that transform a SMPL A-pose mesh
# to a star-shaped A-pose (i.e. Vitruvian A-pose)
bone_transforms_02v = np.tile(np.eye(4), (24, 1, 1))
# Jtr *= sc_factor
# First chain: L-hip (1), L-knee (4), L-ankle (7), L-foot (10)
chain = [1, 4, 7, 10]
rot = rot45p.copy()
for i, j_idx in enumerate(chain):
bone_transforms_02v[j_idx, :3, :3] = rot
t = Jtr[j_idx].copy()
if i > 0:
parent = chain[i-1]
t_p = Jtr[parent].copy()
t = np.dot(rot, t - t_p)
t += bone_transforms_02v[parent, :3, -1].copy()
bone_transforms_02v[j_idx, :3, -1] = t
bone_transforms_02v[chain, :3, -1] -= np.dot(Jtr[chain], rot.T)
# Second chain: R-hip (2), R-knee (5), R-ankle (8), R-foot (11)
chain = [2, 5, 8, 11]
rot = rot45n.copy()
for i, j_idx in enumerate(chain):
bone_transforms_02v[j_idx, :3, :3] = rot
t = Jtr[j_idx].copy()
if i > 0:
parent = chain[i-1]
t_p = Jtr[parent].copy()
t = np.dot(rot, t - t_p)
t += bone_transforms_02v[parent, :3, -1].copy()
bone_transforms_02v[j_idx, :3, -1] = t
bone_transforms_02v[chain, :3, -1] -= np.dot(Jtr[chain], rot.T)
return bone_transforms_02v
if __name__ == '__main__':
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
generation_dir += args.exp_suffix
out_time_file = os.path.join(generation_dir, 'time_generation_full.pkl')
out_time_file_class = os.path.join(generation_dir, 'time_generation.pkl')
stage = cfg['training']['stage']
inner_lr = cfg['training']['inner_lr']
batch_size = cfg['training']['inner_batch_size']
input_type = cfg['data']['input_type']
vis_n_outputs = cfg['generation']['vis_n_outputs']
if vis_n_outputs is None:
vis_n_outputs = -1
train_cloth_split = [v for v in args.train_cloth_split.split(',')]
test_cloth_split = [v for v in args.test_cloth_split.split(',')] if len(args.test_cloth_split) > 0 else train_cloth_split
train_act_split = [v for v in args.train_act_split.split(',')]
test_act_split = [v for v in args.test_act_split.split(',')]
logger, _ = create_logger(generation_dir, phase='test_subj{}_cloth-{}'.format(args.subject_idx, train_cloth_split[0]), create_tf_logs=False)
logger.info('Dataset path: {}'.format(cfg['data']['path']))
single_view = cfg['data']['single_view']
dataset_name = cfg['data']['dataset']
train_dataset = config.get_dataset('test', cfg, subject_idx=args.subject_idx, cloth_split=train_cloth_split, act_split=train_act_split, subsampling_rate=args.subsampling_rate)
cfg['data']['single_view'] = False # for novel pose synthesis we always have access to full-body mesh in canonical pose
cfg['data']['use_raw_scans'] = False
if args.interpolation:
cfg['data']['path'] = 'data/CAPE_test_sampling-rate-1'
# else:
# args.test_subsampling_rate = 1
# args.test_start_offset = 0
test_dataset = config.get_dataset('test', cfg, subject_idx=args.subject_idx if args.test_subject_idx < 0 else args.test_subject_idx, cloth_split=test_cloth_split, act_split=test_act_split, subsampling_rate=args.test_subsampling_rate, start_offset=args.test_start_offset)
# Loader
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, num_workers=args.num_workers, shuffle=True)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=1, num_workers=0, shuffle=False)
# Model
model = config.get_model(cfg, device=device, dataset=train_dataset)
ckpt = torch.load(os.path.join(out_dir, cfg['test']['model_file']))
decoder_state_dict = OrderedDict()
# Load meta-learned SDF decoder
for k, v in ckpt['model'].items():
if k.startswith('module'):
k = k[7:]
if k.startswith('decoder'):
decoder_state_dict[k[8:]] = v
model.decoder.load_state_dict(decoder_state_dict)
# Load forward and backward skinning networks, for fine-tuning
optim_skinning_net_path = cfg['model']['skinning_net1']
ckpt = torch.load(optim_skinning_net_path)
encoder_fwd_state_dict = OrderedDict()
skinning_decoder_fwd_state_dict = OrderedDict()
encoder_bwd_state_dict = OrderedDict()
skinning_decoder_bwd_state_dict = OrderedDict()
for k, v in ckpt['model'].items():
if k.startswith('module'):
k = k[7:]
if k.startswith('skinning_decoder_fwd'):
skinning_decoder_fwd_state_dict[k[21:]] = v
elif k.startswith('skinning_decoder_bwd'):
skinning_decoder_bwd_state_dict[k[21:]] = v
elif k.startswith('encoder_fwd'):
encoder_fwd_state_dict[k[12:]] = v
elif k.startswith('encoder_bwd'):
encoder_bwd_state_dict[k[12:]] = v
model.encoder_fwd.load_state_dict(encoder_fwd_state_dict)
model.encoder_bwd.load_state_dict(encoder_bwd_state_dict)
model.skinning_decoder_fwd.load_state_dict(skinning_decoder_fwd_state_dict)
model.skinning_decoder_bwd.load_state_dict(skinning_decoder_bwd_state_dict)
model.eval()
import depth2mesh.utils.sdf_meshing as sdf_meshing
from depth2mesh.utils.loss_functions import sdf_with_mask as sdf_loss
# Create a clone of meta-learned SDF decoder
decoder = cfg['model']['decoder']
decoder_kwargs = cfg['model']['decoder_kwargs']
decoder_clone = models.decoder_dict[decoder](**decoder_kwargs)
decoder_clone.load_state_dict(model.decoder.state_dict())
decoder_clone = decoder_clone.to(device)
if stage == 'meta-hyper' and cfg['model']['decoder'] == 'hyper_bvp':
if model.decoder.hierarchical_pose:
inner_optimizer = torch.optim.Adam(
params = [
{
"params": decoder_clone.net.parameters(),
"lr": inner_lr,
},
{
"params": decoder_clone.pose_encoder.parameters(),
"lr": 1e-4,
}
]
)
else:
inner_optimizer = torch.optim.Adam(decoder_clone.parameters(), lr=inner_lr)
else:
raise ValueError('Fine-tuning only supports meta-hyper stage \
with SDF decoder type hyper_bvp. Got stage {} and SDF \
decoder {}'.format(stage, cfg['model']['decoder']))
# Checkpoint for fine-tuned SDF decoder
test_optim_ckpt_io = CheckpointIO(generation_dir, model=decoder_clone, optimizer=inner_optimizer)
test_optim_ckpt_filename = 'test_time_optim_subj{}_cloth-{}.pt'.format(args.subject_idx, train_cloth_split[0])
logger.info(test_optim_ckpt_filename)
try:
load_dict = test_optim_ckpt_io.load(test_optim_ckpt_filename)
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', -1)
proj_thr = cfg['training']['proj_thr'] # re-projection threshold to filter out invalid points mapped by backward LBS
if args.optim_epochs > 0:
max_epoch = args.optim_epochs
else:
max_epoch = cfg['test']['optim_iterations']
# Load minimal shape of the target subject, in order to compute bone transformations later
model_dict = train_dataset.get_model_dict(0)
subject = model_dict['subject']
gender = model_dict['gender']
minimal_shape_path = os.path.join(train_dataset.cape_path, 'cape_release', 'minimal_body_shape', subject, subject + '_minimal.npy')
if not os.path.exists(minimal_shape_path):
raise ValueError('Unsupported CAPE subject: {}'.format(subject))
minimal_shape = np.load(minimal_shape_path)
bm_path = os.path.join('./body_models/smpl', gender, 'model.pkl')
from human_body_prior.body_model.body_model import BodyModel
bm = BodyModel(bm_path=bm_path, num_betas=10, batch_size=1, v_template=minimal_shape).cuda()
# Time statistics
time_dict = OrderedDict()
time_dict['network_time'] = 0
# Fine-tuning loop
epoch_cnt = 0
epochs_to_run = args.epochs_per_run if args.epochs_per_run > 0 else (max_epoch + 1)
for _ in range(epochs_to_run):
epoch_it += 1
if epoch_it >= max_epoch:
break
for idx, data in enumerate(train_loader):
inputs = data.get('inputs').to(device)
points_corr = data.get('points_corr').to(device)
poses = data.get('points_corr.pose').to(device)
scale = data.get('points_corr.scale').to(device)
scale = scale.view(-1, 1, 1)
bone_transforms = data.get('points_corr.bone_transforms').to(device)
bone_transforms_02v = data.get('points_corr.bone_transforms_02v').to(device)
minimal_shape = data.get('points_corr.minimal_shape').to(device)
kwargs = {'scale': scale, 'bone_transforms': bone_transforms, 'bone_transforms_02v': bone_transforms_02v, 'minimal_shape': minimal_shape}
# TODO: we should get rid of this by re-calculating center by bounding volume
# not mean of points
coord_min = data.get('points_corr.coord_min').to(device).view(-1, 1, 1)
coord_max = data.get('points_corr.coord_max').to(device).view(-1, 1, 1)
center = data.get('points_corr.center').to(device).unsqueeze(1)
# Use the learned skinning net to transform points to A-pose
t = time.time()
with torch.no_grad():
out_dict = model(inputs, points_corr, stage='skinning_weights', **kwargs)
points_corr_hat = out_dict.get('p_hat')
points_corr_reproj = out_dict.get('p_rp')
normals_a_pose = out_dict.get('normals_a_pose')
# Do the following:
# 1) Filter out points whose re-projection distance is greater than the specified threshold
# 2) Normalize valid points to [-1, 1]^3 for SDF decoder
mask = mask_by_reproj_dist(points_corr, points_corr_reproj, mode='constant', value=proj_thr)
points_corr_hat = points_corr_hat * scale / 1.5
points_corr_hat = normalize_canonical_points(points_corr_hat, coord_min=coord_min, coord_max=coord_max, center=center)
batch_size = points_corr_hat.size(0)
# Generate point samples for fine-tuning
on_surface_samples = points_corr_hat.size(1)
off_surface_samples = on_surface_samples
total_samples = on_surface_samples + off_surface_samples
on_surface_coords = points_corr_hat
on_surface_normals = normals_a_pose
off_surface_coords = (torch.rand(batch_size, off_surface_samples, 3, device=device, dtype=torch.float32) - 0.5) * 2
off_surface_normals = torch.ones(batch_size, off_surface_samples, 3, device=device, dtype=torch.float32) * -1
sdf = torch.zeros(batch_size, total_samples, 1, device=device, dtype=torch.float32) # on-surface = 0
sdf[:, on_surface_samples:, :] = -1 # off-surface = -1
coords_in = torch.cat([on_surface_coords, off_surface_coords], dim=1)
mask = torch.cat([mask, torch.ones_like(mask)], dim=1)
# Use normal information if available.
if on_surface_normals is not None:
normals_in = torch.cat([on_surface_normals, off_surface_normals], dim=1)
else:
normals_in = torch.zeros_like(coords_in)
decoder_input = {'coords': coords_in}
if decoder_clone.hierarchical_pose:
rots = data.get('points_corr.rots').to(device)
Jtrs = data.get('points_corr.Jtrs').to(device)
decoder_input.update({'rots': rots, 'Jtrs': Jtrs})
else:
decoder_input.update({'cond': poses})
gt = {'sdf': sdf, 'normals': normals_in, 'mask': mask}
# Forward pass and compute loss
inner_output = decoder_clone(decoder_input)
inner_loss, inner_loss_dict = compute_sdf_loss(inner_output, gt)
# Regularize on predicted SDF parameters
params = torch.cat(inner_output['params'], dim=1)
n_params = params.size(-1)
inner_loss += params.norm(dim=-1).mean() * 1e2 / n_params
# Do one step of optimization
decoder_clone.zero_grad()
inner_loss.backward()
inner_optimizer.step()
# Update timing
time_dict['network_time'] += time.time() - t
# Logging
log_str = 'Epoch {}: '.format(epoch_it)
for k, v in inner_loss_dict.items():
log_str += '{} loss: {:.4f},'.format(k, v.item())
logger.info(log_str)
epoch_cnt += 1
logger.info('Elapsed network time: {} seconds.'.format(time_dict['network_time']))
# Save fine-tuned model
if epoch_cnt > 0:
test_optim_ckpt_io.save(test_optim_ckpt_filename, epoch_it=epoch_it)
# If we have not reached desired fine-tuning epoch, then exit with code 3.
# This for job-chaining on HPC clusters. You can ignore this if you run
# fine-tuning on local machines.
if epoch_it < max_epoch:
exit(3)
# Novel pose synthesis
model_count = 0
faces = np.load('body_models/misc/faces.npz')['faces']
all_skinning_weights = dict(np.load('body_models/misc/skinning_weights_all.npz'))
# Load forward and backward skinning networks, for novel-pose synthesis
optim_skinning_net_path = cfg['model']['skinning_net2']
ckpt = torch.load(optim_skinning_net_path)
encoder_fwd_state_dict = OrderedDict()
skinning_decoder_fwd_state_dict = OrderedDict()
encoder_bwd_state_dict = OrderedDict()
skinning_decoder_bwd_state_dict = OrderedDict()
for k, v in ckpt['model'].items():
if k.startswith('module'):
k = k[7:]
if k.startswith('skinning_decoder_fwd'):
skinning_decoder_fwd_state_dict[k[21:]] = v
elif k.startswith('skinning_decoder_bwd'):
skinning_decoder_bwd_state_dict[k[21:]] = v
elif k.startswith('encoder_fwd'):
encoder_fwd_state_dict[k[12:]] = v
elif k.startswith('encoder_bwd'):
encoder_bwd_state_dict[k[12:]] = v
model.encoder_fwd.load_state_dict(encoder_fwd_state_dict)
model.encoder_bwd.load_state_dict(encoder_bwd_state_dict)
model.skinning_decoder_fwd.load_state_dict(skinning_decoder_fwd_state_dict)
model.skinning_decoder_bwd.load_state_dict(skinning_decoder_bwd_state_dict)
# Indices of joints for which we set their rotations to 0
zero_indices = np.array([10, 11, 22, 23]) # feet and hands
zero_indices_parents = [7, 8, 20, 21] # and their parents
# Novel-pose synthesis over test data
for _, data in enumerate(test_loader):
model_count += 1
# Output folders
cloth_dir = os.path.join(generation_dir, 'cloth')
# Get index etc.
idx = data['idx'].item()
model_dict = test_dataset.get_model_dict(idx)
if input_type == 'pointcloud':
subset = model_dict['subset']
subject = model_dict['subject']
sequence = model_dict['sequence']
gender = model_dict['gender']
data_path = model_dict['data_path']
filebase = os.path.basename(data_path)[:-4]
else:
raise ValueError('Unknown input type: {}'.format(input_type))
folder_name = os.path.join(subset, subject, sequence)
cloth_dir = os.path.join(cloth_dir, folder_name)
if not os.path.exists(cloth_dir):
os.makedirs(cloth_dir)
poses = data.get('points_corr.pose').to(device)
minimal_shape = data.get('points_corr.minimal_shape').to(device)
colors = np.load('body_models/misc/part_colors.npz')['colors']
if args.high_res:
cano_filename = os.path.join(cloth_dir, filebase + '.cano.high')
posed_filename = os.path.join(cloth_dir, filebase + '.posed.high')
else:
cano_filename = os.path.join(cloth_dir, filebase + '.cano')
posed_filename = os.path.join(cloth_dir, filebase + '.posed')
rots = data.get('points_corr.rots').to(device)
Jtrs = data.get('points_corr.Jtrs').to(device)
# Run grid evaluation and marching-cubes to obtain mesh in canonical space
if hasattr(decoder_clone, 'hierarchical_pose'):
if decoder_clone.hierarchical_pose:
sdf_meshing.create_mesh(decoder_clone,
thetas={'rots': rots, 'Jtrs': Jtrs},
filename=cano_filename, N=512 if args.high_res else 256,
max_batch=64 ** 3)
else:
sdf_meshing.create_mesh(decoder_clone,
thetas=poses[0],
filename=cano_filename, N=512 if args.high_res else 256,
max_batch=64 ** 3)
else:
sdf_meshing.create_mesh(decoder_clone,
thetas=poses,
filename=cano_filename, N=512 if args.high_res else 256,
max_batch=64 ** 3)
# Convert canonical pose shape from the its normalized space to pointcloud encoder space
a_pose_trimesh = trimesh.load(cano_filename + '.ply', process=False)
# Filter out potential floating blobs
labels = trimesh.graph.connected_component_labels(a_pose_trimesh.face_adjacency)
components, cnt = np.unique(labels, return_counts=True)
if len(components) > 1: # and not args.canonical:
face_mask = (labels == components[np.argmax(cnt)])
valid_faces = np.array(a_pose_trimesh.faces)[face_mask, ...]
n_vertices = len(a_pose_trimesh.vertices)
vertex_mask = np.isin(np.arange(n_vertices), valid_faces)
a_pose_trimesh.update_faces(face_mask)
a_pose_trimesh.update_vertices(vertex_mask)
# Re-export the processed mesh
logger.info('Found mesh with floating blobs {}'.format(cano_filename + '.ply'))
logger.info('Original mesh had {} vertices, reduced to {} vertices after filtering'.format(n_vertices, len(a_pose_trimesh.vertices)))
a_pose_trimesh.export(cano_filename + '.ply')
# Run forward skinning network on the extracted mesh points
coord_min = data.get('points_corr.coord_min').to(device)
coord_max = data.get('points_corr.coord_max').to(device)
center = data.get('points_corr.center').to(device)
coord_min = coord_min[0].detach().cpu().numpy()
coord_max = coord_max[0].detach().cpu().numpy()
center = center[0].detach().cpu().numpy()
padding = (coord_max - coord_min) * 0.05
p_hat_np = (np.array(a_pose_trimesh.vertices) / 2.0 + 0.5) * 1.1 * (coord_max - coord_min) + coord_min - padding + center
a_pose_trimesh.vertices = p_hat_np
a_pose_trimesh.export(cano_filename + '.ply')
p_hat_org = torch.from_numpy(p_hat_np).float().to(device).unsqueeze(0)
with torch.no_grad():
coord_max = p_hat_org.max(dim=1, keepdim=True)[0]
coord_min = p_hat_org.min(dim=1, keepdim=True)[0]
total_size = (coord_max - coord_min).max(dim=-1, keepdim=True)[0]
scale = torch.clamp(total_size, min=1.6)
loc = (coord_max + coord_min) / 2
sc_factor = 1.0 / scale * 1.5
p_hat_norm = (p_hat_org - loc) * sc_factor
inp_norm = p_hat_norm
c = model.encode_inputs(inp_norm, forward=True, scale=scale)
c_p = model.get_point_features(p_hat_norm, c=c)
pts_W_fwd = model.decode_w(p_hat_norm, c=c_p, forward=True)
pts_W_fwd = F.softmax(pts_W_fwd, dim=1).transpose(1, 2)
skinning_weights_net = pts_W_fwd[0].detach().cpu().numpy()
# Apply forward LBS to generated posed shape
trans = data.get('points_corr.trans').cuda()
root_orient = data.get('points_corr.root_orient').cuda()
pose_hand = data.get('points_corr.pose_hand').cuda()
pose_body = data.get('points_corr.pose_body').cuda()
body = bm(root_orient=root_orient, pose_body=pose_body, pose_hand=pose_hand, trans=trans)
bone_transforms = body.bone_transforms[0].detach().cpu().numpy()
Jtr = body.Jtr[0].detach().cpu().numpy()
Jtr_a_pose = body.Jtr_a_pose[0].detach().cpu().numpy()
trans = trans[0].detach().cpu().numpy()
# We set rigid transforms of the hands and feet to be the same as their parents
# as they are often not accurately registered
bone_transforms[zero_indices, ...] = bone_transforms[zero_indices_parents, ...]
T = np.dot(skinning_weights_net, bone_transforms.reshape([-1, 16])).reshape([-1, 4, 4])
# Compute T such that it transforms points in Vitruvian A-pose to transformed space
bone_transforms_02v = get_transforms_02v(Jtr_a_pose)
T_v = np.dot(skinning_weights_net, bone_transforms_02v.reshape([-1, 16])).reshape([-1, 4, 4])
T = np.matmul(T, np.linalg.inv(T_v))
# Transform mesh points
n_pts = p_hat_np.shape[0]
homogen_coord = np.ones([n_pts, 1], dtype=np.float32)
a_pose_homo = np.concatenate([p_hat_np, homogen_coord], axis=-1).reshape([n_pts, 4, 1])
body_mesh = np.matmul(T, a_pose_homo)[:, :3, 0].astype(np.float32) + trans
# Create and save transformed mesh
posed_trimesh = trimesh.Trimesh(vertices=body_mesh, faces=a_pose_trimesh.faces, process=False)
posed_trimesh.visual = a_pose_trimesh.visual
posed_trimesh.export(posed_filename + '.ply')
# np.save(os.path.join(cloth_dir, filebase + '.pelvis.npy'), Jtr[0])
logger.info("Exported mesh: {}".format(posed_filename + '.ply'))
exit(0)