-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
205 lines (164 loc) · 6.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import re
from flask import Flask, request, render_template, send_file, url_for
import pandas as pd
import matplotlib.pyplot as plt
import io
from sklearn.manifold import TSNE
import pacmap
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
app = Flask(__name__)
file_path = 'database1.xlsx'
sheet_name = 'Contrasts'
raw_data = pd.read_excel(file_path, sheet_name=sheet_name, header=[0, 1])
raw_data.columns = [
re.sub(r'\s*\(.*?\)', '', ' '.join(col).strip()) for col in raw_data.columns
]
data = raw_data.iloc[1:]
data.fillna(data.mean(numeric_only=True), inplace=True)
metabolites = data.iloc[:, 0]
@app.route('/')
def index():
columns = list(data.columns[1:])
return render_template('index.html', columns=columns)
@app.route('/plot', methods=['POST'])
def plot():
column = request.form['column']
if column not in data.columns:
return "Column does not exist!", 400
plt.figure(figsize=(10, 6))
plt.hist(data[column].dropna(), bins=20, color='blue', edgecolor='black')
plt.title(f'Histogram for: {column}')
plt.xlabel('Values')
plt.ylabel('Frequency')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return send_file(buf, mimetype='image/png')
@app.route('/tsne')
def tsne_plot():
tsne = TSNE(n_components=2, random_state=42)
tsne_result = tsne.fit_transform(data.iloc[:, 1:])
plt.figure(figsize=(10, 6))
plt.scatter(tsne_result[:, 0], tsne_result[:, 1], c='blue', edgecolors='black')
for i in range(len(tsne_result)):
plt.text(tsne_result[i, 0], tsne_result[i, 1], str(i + 1), fontsize=8, ha='right')
plt.title('t-SNE Dimensionality Reduction')
plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return send_file(buf, mimetype='image/png')
@app.route('/pacmap')
def pacmap_plot():
pacmap_model = pacmap.PaCMAP(n_components=2)
pacmap_result = pacmap_model.fit_transform(data.iloc[:, 1:])
plt.figure(figsize=(10, 6))
plt.scatter(pacmap_result[:, 0], pacmap_result[:, 1], c='green', edgecolors='black')
for i in range(len(pacmap_result)):
plt.text(pacmap_result[i, 0], pacmap_result[i, 1], str(i + 1), fontsize=8, ha='right')
plt.title('PaCMAP Dimensionality Reduction')
plt.xlabel('PaCMAP Component 1')
plt.ylabel('PaCMAP Component 2')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return send_file(buf, mimetype='image/png')
@app.route('/tsne_8groups')
def tsne_8groups_plot():
tsne = TSNE(n_components=2, random_state=42, perplexity=2) # Set perplexity to 2
tsne_result = tsne.fit_transform(data.iloc[:8, 1:])
plt.figure(figsize=(10, 6))
plt.scatter(tsne_result[:, 0], tsne_result[:, 1], c='red', edgecolors='black')
for i in range(8):
plt.text(tsne_result[i, 0], tsne_result[i, 1], str(i + 1), fontsize=8, ha='right')
plt.title('t-SNE for First 8 Groups')
plt.xlabel('t-SNE Component 1')
plt.ylabel('t-SNE Component 2')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return send_file(buf, mimetype='image/png')
@app.route('/clustering', methods=['GET', 'POST'])
def clustering():
if request.method == 'POST':
try:
n_clusters = int(request.form['n_clusters'])
except ValueError:
return "Invalid number of clusters!", 400
if n_clusters < 1:
return "Number of clusters must be at least 1!", 400
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_result = kmeans.fit_predict(data.iloc[:, 1:])
silhouette_avg = silhouette_score(data.iloc[:, 1:], cluster_result)
data_with_clusters = data.copy()
data_with_clusters['Cluster'] = cluster_result
plt.figure(figsize=(10, 6))
for cluster in range(n_clusters):
cluster_data = data_with_clusters[data_with_clusters['Cluster'] == cluster]
plt.scatter(
cluster_data.iloc[:, 1],
cluster_data.iloc[:, 2],
label=f'Cluster {cluster}'
)
for idx in cluster_data.index:
plt.text(
cluster_data.loc[idx].iloc[1],
cluster_data.loc[idx].iloc[2],
str(idx + 1),
fontsize=8,
ha='right'
)
plt.title(f'K-Means Clustering Visualization (k={n_clusters})')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.savefig('static/clustering_plot.png', format='png')
plt.close()
return render_template('clustering_result.html', silhouette_avg=silhouette_avg, image_url=url_for('static', filename='clustering_plot.png'), n_clusters=n_clusters)
return render_template('clustering.html')
@app.route('/clustering_8features', methods=['GET', 'POST'])
def clustering_8features():
if request.method == 'POST':
try:
n_clusters = int(request.form['n_clusters'])
except ValueError:
return "Invalid number of clusters!", 400
if n_clusters < 1:
return "Number of clusters must be at least 1!", 400
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_result = kmeans.fit_predict(data.iloc[:8, 1:])
silhouette_avg = silhouette_score(data.iloc[:8, 1:], cluster_result)
data_with_clusters = data.iloc[:8].copy()
data_with_clusters['Cluster'] = cluster_result
plt.figure(figsize=(10, 6))
for cluster in range(n_clusters):
cluster_data = data_with_clusters[data_with_clusters['Cluster'] == cluster]
plt.scatter(
cluster_data.iloc[:, 1],
cluster_data.iloc[:, 2],
label=f'Cluster {cluster}'
)
for idx in cluster_data.index:
plt.text(
cluster_data.loc[idx].iloc[1],
cluster_data.loc[idx].iloc[2],
str(idx + 1),
fontsize=8,
ha='right'
)
plt.title(f'K-Means Clustering Visualization for First 8 Features (k={n_clusters})')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.savefig('static/clustering_8features_plot.png', format='png')
plt.close()
return render_template('clustering_result_8features.html', silhouette_avg=silhouette_avg, image_url=url_for('static', filename='clustering_8features_plot.png'), n_clusters=n_clusters)
return render_template('clustering_8features.html')
if __name__ == '__main__':
app.run(debug=True)