-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
287 lines (244 loc) · 11.5 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
__author__ = 'Ayushman Dash'
import os, traceback
import numpy as np
import random
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
class Dataset :
def __init__(self, dataset_name,
use_mean_image = True,
use_custom_train_file = None,
use_custom_validate_file = None,
use_custom_test_file = None):
'''
This initializes the dataset object and creates the following variables
1. parent_dir: The parent directory of the dataset
2. target_file_path: The file that has a list of labels. It is
supposed to be "labels.txt" in the dataset root directory
3. data_root: The root directory of the data in the dataset
directory. This will be appended to the relative path
present in the train.txt, test.txt and validate.txt
4. train_file_path: Path of the file that contains the training
data. It is supposed to be "train.txt" and should be
placed in the root directory of the dataset. It should
consist of lines like
"<relative path to the datafile> <class label id>"
Make sure that the relative path and the class label are
separated by a "blank space" and the <class label> is an
index of the class label in "labels.txt".
5. test_file_path: Path of the file that contains the testing
data. It is supposed to be "test.txt" and should be
placed in the root directory of the dataset. It should
consist of lines like
"<relative path to the datafile> <class label id>"
Make sure that the relative path and the class label are
separated by a "blank space" and the <class label> is an
index of the class label in "labels.txt".
6. validate_file_path: Path of the file that contains the validation
data. It is supposed to be "validation.txt" and should be
placed in the root directory of the dataset. It should
consist of lines like
"<relative path to the datafile> <class label id>"
Make sure that the relative path and the class label are
separated by a "blank space" and the <class label> is an
index of the class label in "labels.txt".
6. has_train: A flag that tells if train.txt exists or not. Some
datasets might just have just one file which lists all the
data files.
7. has_test: A flag that tells if test.txt exists or not. Some
datasets might just have just one file which lists all the
data files
8. has_validate: A flag that tells if tvalidation.txt exists or not.
Some datasets might just have just one file which lists
all the data files
9. target: A list of all the unique labels in the dataset
10. n_target: number of unique labels in the dataset
11. one_hot_targets: A codebook with one-hot encodings of the
targets. It is in the format [n_target X n_target] with the row index
corresponding to the index of target
:param dataset_name: name of the dataset to load.
A folder named "dataset_name will be searched in "data/datasets" and
the above mentioned data will be loaded
For Example, put the dataset with the following structure in
data/dataset/<name_of_dataset>/
|__train.txt
|__test.txt
|__validate.txt
|__labels.txt
|__data/
|__<any_folder_name>/<data_file>
Remember that train.txt, test.txt are validate.txt are not required
always. any one would work. Make sure you check the respective flags
before use.
'''
self.gen_counter = 0
self.data_list = None
self.use_mean_image = use_mean_image
train_file_name = 'train.txt'
if use_custom_train_file is not None:
train_file_name = use_custom_train_file
validate_file_name = 'validate.txt'
if use_custom_validate_file is not None:
validate_file_name = use_custom_validate_file
test_file_name = 'test.txt'
if use_custom_test_file is not None:
test_file_name = use_custom_test_file
self.parent_dir = os.path.join("data/datasets/", dataset_name)
self.target_file_path = os.path.join(self.parent_dir, 'labels.txt')
self.data_root = os.path.join(self.parent_dir, 'data')
self.train_file_path = os.path.join(self.parent_dir, train_file_name)
self.test_file_path = os.path.join(self.parent_dir, test_file_name)
self.validate_file_path = os.path.join(self.parent_dir, validate_file_name)
self.has_train = os.path.isfile(self.train_file_path)
self.has_test = os.path.isfile(self.test_file_path)
self.has_validate = os.path.isfile(self.validate_file_path)
self.mean_img = None
print("has_train:", self.has_train)
print("has_test:", self.has_test)
print("has_validate:", self.has_validate)
try:
with open(self.target_file_path) as f :
self.target = f.readlines()
self.n_target = len(self.target)
except IOError:
print('Could not load the labels.txt file in the dataset. A '
'dataset folder is expected in the "data/datasets" '
'directory with the name that has been passed as an '
'argument to this method. This directory should contain a '
'file called labels.txt which contains a list of labels and '
'corresponding folders for the labels with the same name as '
'the labels.')
traceback.print_stack()
lbl_idxs = np.arange(len(self.target))
self.one_hot_targets = np.zeros((self.n_target, self.n_target))
self.one_hot_targets[np.arange(self.n_target), lbl_idxs] = 1
self.batch_size = 64
self.resize = [1000, 750]
self.mode = 'train'
self.model = 'caes'
self.absolute_count = 0
def one_hot_encode_str_lbl(self, lbl):
'''
Encodes a string label into one-hot encoding
Example:
input: "window"
output: [0 0 0 0 0 0 1 0 0 0 0 0]
the length would depend on the number of classes in the dataset. The
above is just a random example.
:param lbl: The string label
:return: one-hot encoding
'''
idx = self.target.index(lbl)
return self.one_hot_targets[idx]
def one_hot_encode_id_lbl(self, lbl):
'''
Encodes a string label (id) into one-hot encoding
Example:
input: "13"
output: [0 0 0 0 0 0 1 0 0 0 0 0]
the length would depend on the number of classes in the dataset. The
above is just a random example.
:param lbl: The string label id
:return: one-hot encoding
'''
idx = int(lbl)
return self.one_hot_targets[idx]
def __iter__(self):
return self
def load_mean_image(self):
if self.mode == 'train':
self.mean_file_name = 'train_mean.tiff'
if self.mode == 'test':
self.mean_file_name = 'test_mean.tiff'
if self.mode == 'validate':
self.mean_file_name = 'validate_mean.tiff'
self.mean_file_path = os.path.join(self.parent_dir, self.mean_file_name)
self.mean_img = Image.open(self.mean_file_path)
if (self.mean_img is None):
raise ValueError("Couldn't open dataset's mean image.")
def next(self):
'''
:return:
'''
if (self.mean_img is None and self.use_mean_image):
self.load_mean_image()
img_batch = []
lbl_batch = []
if self.data_list is None:
if self.mode == 'train':
with open(self.train_file_path, 'rb') as data_file :
self.data_list = data_file.readlines()
elif self.mode == 'test' and self.has_test:
with open(self.test_file_path, 'rb') as data_file :
self.data_list = data_file.readlines()
elif self.mode == 'validate' and self.has_validate:
with open(self.validate_file_path, 'rb') as data_file :
self.data_list = data_file.readlines()
random.shuffle(self.data_list)
batch_file_data = self.data_list[self.gen_counter:
(self.gen_counter + self.batch_size)]
if self.gen_counter >= len(self.data_list):
self.gen_counter = 0
raise StopIteration()
for count, l in enumerate(batch_file_data):
#for count, l in list(enumerate(data_list))[0:128] :
img_path, lbl = l.strip().split()
try :
self.absolute_count += 1
img, one_hot_lbl = self.read_data(img_path, lbl, self.resize)
if (self.mean_img is not None):
# It appears `numpy` will cast the `uint8` into something
# else and not allow values to overflow (which would be
img = img[:,:,0] - self.mean_img
# XXX: This hack will only work for monochromatic images
img = img.reshape([self.resize[0], self.resize[1], 1])
img_batch.append(img)
lbl_batch.append(one_hot_lbl)
except IOError:
print('There was an error while yielding a minibatch from the '
'dataset. Please make sure that you have followed the'
' instructions properly and try again.')
traceback.print_stack()
sys.exit()
self.gen_counter += self.batch_size
return (np.array(img_batch), np.array(lbl_batch))
def __next__(self):
return self.next()
def is_grey_scale(img_path) :
'''
A utility method to be used later to check whether an image is
grayscale of color
:return: True if gray scale
'''
im = Image.open(img_path).convert('RGB')
w, h = im.size
for i in range(w) :
for j in range(h) :
r, g, b = im.getpixel((i, j))
if r != g != b :
return False
return True
def read_data(self, img_path, lbl, resize):
'''
This method reads an image and then preprocesses it.
:param img_path: relative path to the image
:param lbl: the class label id
:param resize: [width, height] to resize the image
:return: image, one_hot_label
'''
with open(os.path.join(self.data_root,
img_path.decode('utf-8')), 'rb') as img_file:
img = Image.open(img_file)
w, h = img.size
img = img.resize((resize[1], resize[0]), Image.BICUBIC)
img_bw = img.convert('L')
img_bw = np.asarray(img_bw, dtype = np.uint8)
#plt.imshow(img_bw, cmap='gray')
#plt.show()
#if self.model is 'caes':
# img_bw = img_bw[np.newaxis, :]
#else:
img_bw = img_bw[:,:, np.newaxis]
one_hot_lbl = self.one_hot_encode_id_lbl(lbl)
return img_bw, one_hot_lbl