-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
125 lines (97 loc) · 3.92 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import numpy as np
import argparse
import datetime
import json
import time
import glob
import csv
import torch
from data_loaders_name import get_loader
from monai.networks.nets import BasicUNet, UNet, AttentionUnet
from monai.inferers import sliding_window_inference
import nibabel as nib
def val_test(foldnum, syn_folder, modelname, model, dataset, criterion, criterion_mse, device, mode="val"):
model.eval()
data = iter(dataset)
metrics = {}
paired_raw, paired = {}, {}
with open("paired.csv", "r") as file:
csvreader = csv.reader(file)
for row in csvreader:
paired_raw[row[0]] = row[1]
paired[row[0].split('/')[-1].split('.nii')[0]] = row[1].split('/')[-1].split('.nii')[0]
with torch.no_grad():
for it in range(len(dataset)):
imgs, trgts, name = next(data)
# print(imgs.size(), trgts.size())
syn_x, syn_y = [], []
for idx in range(imgs.size(dim=0)):
img, trgt = imgs[idx, :, :, :], trgts[idx, :, :, :]
for idy in range(img.size(dim=1)):
x, y = img[:, idy, :, :], trgt[:, idy, :, :]
x = x.to(device)
y = y.to(device)
x, y = torch.unsqueeze(x, 0), torch.unsqueeze(y, 0)
y_ = model(x)
syn_x.append(y_)
y_ = torch.cat(syn_x, dim=1)
y_ = y_.data.cpu().numpy()
y_ = np.squeeze(y_)
real_pib = paired_raw[name[0]]
name = name[0].split("/")[-1].split(".")[0]
real_pib_img = nib.load(real_pib)
syn_image = nib.Nifti1Image(y_, real_pib_img.affine, real_pib_img.header)
nib.save(syn_image, f"{syn_folder}/syn_{paired[name]}")
print(f"Done generating {name}")
return metrics
def main():
parser = argparse.ArgumentParser(description='RIED 2D translation')
parser.add_argument('--model_name', default="resunet", type=str,
help='name of the classification model')
parser.add_argument('-d', '--dataset', default='adni', type=str)
parser.add_argument('--batch_size', default=1, type=int, metavar='N',
help='number of samples in each batch')
parser.add_argument('--num_classes', default=1, type=int, metavar='N',
help='number of classes to predict')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model_name == "unet":
model = BasicUNet(
spatial_dims=2,
features=(16, 32, 64, 128, 256, 32),
in_channels=1,
out_channels=1,
).to(device)
elif args.model_name == "resunet":
model = UNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=4,
).to(device)
elif args.model_name == "attunet":
model = AttentionUnet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
).to(device)
else:
print(f"Invalid model name: {args.model_name}!")
exit()
mpath = f"path_to_best_model.ckpt"
model.load_state_dict(torch.load(mpath, map_location=device))
dataset_val = get_loader(f'./{args.dataset}/val', batch_size=1, mode="val")
opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
criterion = torch.nn.L1Loss()
criterion_mse = torch.nn.MSELoss()
syn_folder = "./results/"
if not os.path.exists(syn_folder):
os.makedirs(syn_folder)
val_loss_metrics = val_test(args.dataset, syn_folder, args.model_name, model, dataset_val, criterion, criterion_mse, device)
if __name__ == '__main__':
main()