-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize_video.py
153 lines (126 loc) · 4.63 KB
/
recognize_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# USAGE
# python recognize_video.py --detector face_detection_model \
# --embedding-model openface_nn4.small2.v1.t7 \
# --recognizer output/recognizer.pickle \
# --le output/le.pickle
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import pickle
import time
import cv2
import os
import numpy as np
def who_is_it(vector,database_encode):
encoding = vector
min_dist = 100
for i in range(len(database["embeddings"])):
db_enc = database["embeddings"][i]
name = database["names"][i]
dist = np.linalg.norm(encoding - db_enc)
if dist < min_dist:
min_dist = dist
identity = name
if not min_dist < 0.55:
identity = "Not in database"
print(min_dist)
return min_dist, identity
#File paths
filedir = os.path.dirname(os.path.realpath(__file__))
detector_path = os.path.join(filedir, "face_detection_model")
embedding_model_path = os.path.join(filedir, "openface_nn4.small2.v1.t7")
model = os.path.join(filedir, "output", "model.pickle")
label_encoder =os.path.join(filedir, "output", "label_encoder.pickle")
model = os.path.join(filedir, "output", "embeddings.pickle")
confidence_limit = 0.80
database = pickle.loads(open(model, "rb").read())
# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.join(detector_path, "deploy.prototxt")
modelPath = os.path.join(detector_path, "res10_300x300_ssd_iter_140000.caffemodel")
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)
# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(embedding_model_path)
# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open(model, "rb").read())
le = pickle.loads(open(label_encoder, "rb").read())
# initialize the video stream, then allow the camera sensor to warm up
print("[INFO] starting video stream...")
capture = cv2.VideoCapture(0,cv2.CAP_DSHOW)
time.sleep(2.0)
# start the FPS throughput estimator
fps = FPS().start()
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream
_,frame = capture.read()
# resize the frame to have a width of 600 pixels (while
# maintaining the aspect ratio), and then grab the image
# dimensions
frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]
# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(frame, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
# apply OpenCV's deep learning-based face detector to localize
# faces in the input image
detector.setInput(imageBlob)
detections = detector.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections
if confidence > confidence_limit:
# compute the (x, y)-coordinates of the bounding box for
# the face
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI
face = frame[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
# ensure the face width and height are sufficiently large
if fW < 20 or fH < 20:
continue
# construct a blob for the face ROI, then pass the blob
# through our face embedding model to obtain the 128-d
# quantification of the face
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
similarity, name = who_is_it(vec, database)
# perform classification to recognize the face
# preds = recognizer.predict_proba(vec)[0]
# j = np.argmax(preds)
# proba = preds[j]
# name = le.classes_[j]
# draw the bounding box of the face along with the
# associated probability
text = "{}: {:.2f}".format(name, similarity)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(frame, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# update the FPS counter
fps.update()
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
capture.release()
cv2.destroyAllWindows()