-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract.py
61 lines (43 loc) · 1.66 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import time
import logging
from google.cloud import bigquery
# from sql import query
# import pandas as pd
# from pandas import DataFrame
# from datetime import datetime
def get_logging_format() -> logging.Logger:
"""
function to return custom format logging
return logging.Logger
"""
logging.Formatter.converter = time.gmtime
logging.basicConfig(
format="[%(asctime)s,%(msecs)d] %(levelname)-8s [%(filename)s:%(lineno)d] - %(message)s",
datefmt="%Y-%m-%d, %H:%M:%S",
level=logging.INFO,
)
_logger: logging.Logger = logging.getLogger("de-logging")
return _logger
logger: logging.Logger = get_logging_format()
def extract_data_from_query(file_name): #file_name, query_loc: str
"""
Extract Data from Bigquery table with prepared query
"""
# final_path = temp_path + f"/{file_name}"
bqclient = bigquery.Client.from_service_account_json('/Users/junshengtan/Desktop/personal_repo/github-to-bq/secret_key.json')
job_config = bigquery.QueryJobConfig(allow_large_results=True)
query_loc = './sql/query.sql'
sql_file = open(query_loc, 'r')
query_string = sql_file.read()
sql_file.close()
# make api request to run query
query_job = bqclient.query(query_string, job_config=job_config)
# wait for job to complete
query_job.result()
dataframe = bqclient.query(query_string).to_dataframe(create_bqstorage_client=True)
print(dataframe.head())
dataframe.to_csv(file_name) # output path and file_name
logger.info("export to csv: %s", file_name)
logger.info("Number of rows exported: %d", len(dataframe))
logger.info(len(dataframe))
return file_name