-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08.rkt
370 lines (296 loc) · 9.75 KB
/
08.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#lang racket
(require rackunit)
(require "00-preface.rkt")
(require "06.rkt")
; [X] [X -> Boolean] X List -> List
; (define (rember-f test? a l) '()) ;stub
(define rember-f
(lambda (test? a l)
(cond
((null? l) '())
((test? a (car l)) (rember-f test? a (cdr l)))
(else
(cons (car l)
(rember-f test? a
(cdr l)))))))
(check-equal? (rember-f = 5 '(6 2 5 3))
'(6 2 3))
(check-equal? (rember-f eq? 'jelly '(jelly beans are good))
'(beans are good))
(check-equal? (rember-f equal? '(pop corn) '(lemonade (pop corn) and (cake)))
'(lemonade and (cake)))
; [Atom -> Boolean] -> [Atom List] -> [List]
(define rember-f-curr
(lambda (test?)
(lambda (a l)
(cond
((null? l) '())
((test? a (car l)) (cdr l))
(else
(cons (car l)
((rember-f-curr test?) a
(cdr l))))))))
(check-equal? ((rember-f-curr =) 5 '(6 2 5 3))
'(6 2 3))
(define rember-eq? (rember-f-curr eq?))
(check-equal? (rember-eq? 'tuna '(tuna salad is good))
'(salad is good))
; [Atom -> Boolean] -> [Atom Atom List] -> [List]
(define insertR-f
(lambda (test?)
(lambda (new old lat)
(cond
((null? lat) '())
(else
(cond
((test? (car lat) old)
(cons old
(cons new (cdr lat))))
(else
(cons (car lat)
((insertR-f test?) new old (cdr lat))))))))))
(check-equal? ((insertR-f eq?) 'e 'd '(a b c d f g d h))
'(a b c d e f g d h))
; Any Any Any -> [List-of Any]
; (define (seqL new old l) '()) ;stub
(define seqL
(lambda (new old list)
(cons new (cons old list))))
(check-equal? (seqL 1 2 '(3)) '(1 2 3))
(define seqR
(lambda (new old list)
(cons old (cons new list))))
(check-equal? (seqR 1 2 '(3))
'(2 1 3))
; [[Any Any Any] -> [List-of Any]] -> [Atom Atom List] -> List
; (define ((insert-g seq) old new list) '()) ;stub
(define insert-g
(lambda (seq)
(lambda (new old lat)
(cond
((null? lat) '())
(else
(cond
((eq? (car lat) old)
(seq new old (cdr lat)))
(else
(cons (car lat)
((insert-g seq) new old
(cdr lat))))))))))
(check-equal? ((insert-g seqR) 'e 'd '(a b c d f g d h))
'(a b c d e f g d h))
(check-equal? ((insert-g seqL) 'e 'd '(a b c d f g d h))
'(a b c e d f g d h))
(check-equal? ((insert-g (lambda (new old list)
(cons 'hello (cons new (cons old list)))))
'a 'b '(a b))
'(a hello a b))
(define inserL (insert-g seqL))
(define seqSubst
(lambda (new old list)
(cons new list)))
(check-equal? ((insert-g seqSubst)
'a 'b
'(a b c))
'(a a c))
; Atom List -> List
(define yyy
(lambda (a l)
((insert-g seqrem) #f a l)))
; Atom Atom List -> List
(define seqrem
(lambda (new old l) l))
(check-equal? (yyy 'a '(a b c)) '(b c))
; Atom -> [[Atom Atom] -> Number]
; translate the provided atom into a function represented by that atom
; (define (atom-to-function a) -) ;stub
(define (atom-to-function a)
(cond ((eq? a '+) +)
((eq? a '*) *)
((eq? a '^) expt)))
(check-eq? ((atom-to-function '+) 1 1) 2)
; (define (value nexp) nexp) ;stub
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
((atom-to-function
(operator nexp))
(value (1st-sub-expr nexp))
(value (2nd-sub-expr nexp)))))))
(check-eq? (value '(+ 1 2)) 3)
(check-eq? (value '(+ (+ 1 2) (+ 3 4))) 10)
; [Atom Atom -> Boolean] Atom [List-of Atom] -> [List-of Atom]
; remove an element from a list based on the provided test
; (define (multirember-f test? a lat) '()) ;stub
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
((null? lat) '())
((test? a (car lat))
((multirember-f test?) a (cdr lat)))
(else
(cons (car lat)
((multirember-f test?) a (cdr lat))))))))
(check-equal? ((multirember-f eq?) 'a '(a b c a b c))
'(b c b c))
(check-equal? ((multirember-f eq?) 'tuna '(shrimp salad tuna salad and tuna))
'(shrimp salad salad and))
(define multirember-eq?
(multirember-f eq?))
; Atom -> Atom -> Boolean
(define eq?-c
(lambda (a)
(lambda (x)
(eq? x a))))
; Atom -> Boolean
(define eq?-tuna
(eq?-c 'tuna))
; (define (multiremberT test?) (lambda (lat) '())) ;stub
(define multiremberT
(lambda (test? lat)
(cond
((null? lat) '())
((test? (car lat))
(multiremberT test? (cdr lat)))
(else
(cons (car lat)
(multiremberT test? (cdr lat)))))))
(check-equal? (multiremberT eq?-tuna '(shrimp salad tuna salad and tuna))
'(shrimp salad salad and))
; Atom Atom Atom [List-of Atom] -> [List-of Atom]
; (define (multiinsertLR new oldL oldR lat) '()) ;stub
(define multiinsertLR
(lambda (new oldL oldR lat)
(cond
((null? lat) '())
((eq? (car lat) oldL)
(cons new
(cons oldL
(multiinsertLR new oldL oldR (cdr lat)))))
((eq? (car lat) oldR)
(cons oldR
(cons new
(multiinsertLR new oldL oldR (cdr lat)))))
(else
(cons (car lat)
(multiinsertLR new oldL oldR (cdr lat)))))))
(check-equal? (multiinsertLR 1 'c 'd '(a b c d e))
'(a b 1 c d 1 e))
; Atom Atom Atom [List-of Atom] [List-of Atom Number Number -> ?] -> [List-of Atom]
(define multiinsertLR&co
(lambda (new oldL oldR lat col)
(cond
((null? lat) (col '() 0 0))
((eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR
(cdr lat)
(lambda (newlat L R)
(col (cons new (cons oldL newlat))
(add1 L) R))))
((eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR
(cdr lat)
(lambda (newlat L R)
(col (cons oldR (cons new newlat))
L (add1 R)))))
(else
(multiinsertLR&co new oldL oldR
(cdr lat)
(lambda (newlat L R)
(col (cons (cdr lat) newlat) L R)))))))
;(check-equal? (multiinsertLR&co 'salty 'fish 'chips
; '(chips and fish or fish and chips))
; '(chips salty and salty fish or salty fish and chips salty))
;(define (evens-only* sexp) '()) ;stub
(define evens-only*
(lambda (expr)
(cond
((null? expr) '())
((atom? (car expr))
(cond
((even? (car expr)) (cons (car expr) (evens-only* (cdr expr))))
(else
(evens-only* (cdr expr)))))
(else
(cons (evens-only* (car expr))
(evens-only* (cdr expr)))))))
(check-equal? (evens-only* '())
'())
(check-equal? (evens-only* '(1 2))
'(2))
(check-equal? (evens-only* '((9 1 2 8) 3 10 ((9 9) 7 6) 2))
'((2 8) 10 (() 6) 2))
(define the-last-friend
(lambda (newl product sum)
(cons sum
(cons product
newl))))
; (define (evens-only*&co l col) '()) ;stub
(define evens-only*&co
(lambda (l col)
(cond
((null? l) (col '() 1 0))
((atom? (car l))
(cond
((even? (car l))
(evens-only*&co (cdr l)
(lambda (newl p s)
(col (cons (car l) newl)
(* (car l) p) s))))
(else
(evens-only*&co (cdr l)
(lambda (newl p s)
(col newl
p (+ (car l) s)))))))
(else
(evens-only*&co (car l)
(lambda (al ap as)
(evens-only*&co (cdr l)
(lambda (dl dp ds)
(col (cons al dl)
(* ap dp)
(+ as ds))))))))))
(check-equal? (evens-only*&co '(2) the-last-friend)
'(0 2 2))
(check-equal? (evens-only*&co '((1 2) (3 4)) the-last-friend)
'(4 8 (2) (4)))
(check-equal? (evens-only*&co '((9 1 2 8) 3 10 ((9 9) 7 6) 2)
the-last-friend)
'(38 1920 (2 8) 10 (() 6) 2))
; a few examples to understand continuations better
; the simplest example I could think of:
(define (plus+n a b con)
(con (+ a b)))
(plus+n 1 2 (lambda (new) (+ new 3)))
; example of gethering two values across the evaluation
(define (show-sum-and-prod s p)
(cons s (cons p '())))
(define result&co
(lambda (lon con)
(cond
((null? lon) (con 0 1))
(else
(result&co (cdr lon)
(lambda (sum prod)
(con (+ (car lon) sum)
(* (car lon) prod))))))))
(check-equal? (result&co '(1 2 3 4) show-sum-and-prod)
`(,(+ 1 2 3 4) ,(* 1 2 3 4)))
; add1 to even numbers on the list, count occurances of even and odd numbers
(define count
(lambda (lon con)
(cond
((null? lon) (con '() 0 0))
((even? (car lon))
(count (cdr lon) (lambda (newlon even odd)
(con (cons (car lon) newlon)
(add1 even) odd))))
(else
(count (cdr lon) (lambda (newlon even odd)
(con newlon
even (add1 odd))))))))
(check-equal? (count '(1 2 3 4 5 6) (lambda (lon even odd) (list lon even odd)))
'((2 4 6) 3 3))