-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmain.py
141 lines (104 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from dataset import *
from model import Net
import argparse
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torch.tensor
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from PIL import Image
from torch.autograd import Variable
import shutil
parser = argparse.ArgumentParser()
parser.add_argument('dataroot', help='path to dataset of kaggle ultrasound nerve segmentation')
# parser.add_argument('dataroot', default='data', help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=1)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--start_epoch', type=int, default=0, help='number of epoch to start')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--useBN', action='store_true', help='enalbes batch normalization')
parser.add_argument('--output_name', default='checkpoint___.tar', type=str, help='output checkpoint filename')
args = parser.parse_args()
print(args)
############## dataset processing
dataset = kaggle2016nerve(args.dataroot)
train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batchSize,
num_workers=args.workers, shuffle=True)
############## create model
model = Net(args.useBN)
if args.cuda:
model.cuda()
cudnn.benchmark = True
############## resume
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.cuda == False:
checkpoint = torch.load(args.resume, map_location={'cuda:0':'cpu'})
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint (epoch {}, loss {})"
.format(checkpoint['epoch'], checkpoint['loss']) )
else:
print("=> no checkpoint found at '{}'".format(args.resume))
def save_checkpoint(state, filename=args.output_name):
torch.save(state, filename)
############## training
optimizer = optim.Adagrad(model.parameters(), lr=args.lr)
model.train()
def train(epoch):
"""
training
"""
loss_fn = nn.MSELoss()
if args.cuda:
loss_fn = loss_fn.cuda()
loss_sum = 0
for i, (x, y) in enumerate(train_loader):
x, y_true = Variable(x), Variable(y)
if args.cuda:
x = x.cuda()
y_true = y_true.cuda()
for ii in range(1):
y_pred = model(x)
loss = loss_fn(y_pred, y_true)
optimizer.zero_grad()
loss.backward()
loss_sum += loss.data[0]
optimizer.step()
if i % 5 == 0:
print('batch no.: {}, loss: {}'.format(i, loss.data[0]))
print('epoch: {}, epoch loss: {}'.format(epoch,loss.data[0]/len(train_loader) ))
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'loss': loss.data[0]/len(train_loader)
})
for epoch in range(args.niter):
train(epoch)
############ just check test (visualization)
def showImg(img, binary=True, fName=''):
"""
show image from given numpy image
"""
img = img[0,0,:,:]
if binary:
img = img > 0.5
img = Image.fromarray(np.uint8(img*255), mode='L')
if fName:
img.save('assets/'+fName+'.png')
else:
img.show()
model.eval()
train_loader.batch_size=1
for i, (x,y) in enumerate(train_loader):
if i >= 11:
break
y_pred = model(Variable(x))
showImg(x.numpy(), binary=False, fName='ori_'+str(i))
showImg(y_pred.data.numpy(), binary=False, fName='pred_'+str(i))
showImg(y.numpy(), fName='gt_'+str(i))