forked from aws/aws-lc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathec.c
1174 lines (1020 loc) · 38.7 KB
/
ec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* ([email protected]). This product includes software written by Tim
* Hudson ([email protected]).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include "internal.h"
#include "../../internal.h"
#include "../bn/internal.h"
#include "../delocate.h"
#include "builtin_curves.h"
static void ec_point_free(EC_POINT *point, int free_group);
static void ec_group_init_static_mont(BN_MONT_CTX *mont, size_t num_words,
const BN_ULONG *modulus,
const BN_ULONG *rr, uint64_t n0) {
bn_set_static_words(&mont->N, modulus, num_words);
bn_set_static_words(&mont->RR, rr, num_words);
#if defined(OPENSSL_64_BIT)
mont->n0[0] = n0;
#elif defined(OPENSSL_32_BIT)
mont->n0[0] = (uint32_t)n0;
mont->n0[1] = (uint32_t)(n0 >> 32);
#else
#error "unknown word length"
#endif
}
static void ec_group_set_a_minus3(EC_GROUP *group) {
const EC_FELEM *one = ec_felem_one(group);
group->a_is_minus3 = 1;
ec_felem_neg(group, &group->a, one);
ec_felem_sub(group, &group->a, &group->a, one);
ec_felem_sub(group, &group->a, &group->a, one);
}
static void ec_group_set_a_zero(EC_GROUP *group) {
group->a_is_minus3 = 0;
OPENSSL_memset(group->a.words, 0, sizeof(EC_FELEM));
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p224) {
out->curve_name = NID_secp224r1;
out->comment = "NIST P-224";
// 1.3.132.0.33
static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21};
OPENSSL_memcpy(out->oid, kOIDP224, sizeof(kOIDP224));
out->oid_len = sizeof(kOIDP224);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP224Field),
kP224Field, kP224FieldRR, kP224FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP224Order),
kP224Order, kP224OrderRR, kP224OrderN0);
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistp224_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP224GX, sizeof(kP224GX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP224GY, sizeof(kP224GY));
out->generator.raw.Z.words[0] = 1;
OPENSSL_memcpy(out->b.words, kP224B, sizeof(kP224B));
#else
out->meth = EC_GFp_mont_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP224MontGX, sizeof(kP224MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP224MontGY, sizeof(kP224MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP224FieldR, sizeof(kP224FieldR));
OPENSSL_memcpy(out->b.words, kP224MontB, sizeof(kP224MontB));
#endif
out->generator.group = out;
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
out->conv_form = POINT_CONVERSION_UNCOMPRESSED;
out->mutable_ec_group = 0;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p256) {
out->curve_name = NID_X9_62_prime256v1;
out->comment = "NIST P-256";
// 1.2.840.10045.3.1.7
static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x03, 0x01, 0x07};
OPENSSL_memcpy(out->oid, kOIDP256, sizeof(kOIDP256));
out->oid_len = sizeof(kOIDP256);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP256Field),
kP256Field, kP256FieldRR, kP256FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP256Order),
kP256Order, kP256OrderRR, kP256OrderN0);
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \
!defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistz256_method();
#else
out->meth = EC_GFp_nistp256_method();
#endif
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, kP256MontGX, sizeof(kP256MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP256MontGY, sizeof(kP256MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP256FieldR, sizeof(kP256FieldR));
OPENSSL_memcpy(out->b.words, kP256MontB, sizeof(kP256MontB));
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
out->conv_form = POINT_CONVERSION_UNCOMPRESSED;
out->mutable_ec_group = 0;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p384) {
out->curve_name = NID_secp384r1;
out->comment = "NIST P-384";
// 1.3.132.0.34
static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22};
OPENSSL_memcpy(out->oid, kOIDP384, sizeof(kOIDP384));
out->oid_len = sizeof(kOIDP384);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP384Field),
kP384Field, kP384FieldRR, kP384FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP384Order),
kP384Order, kP384OrderRR, kP384OrderN0);
#if !defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistp384_method();
#else
out->meth = EC_GFp_mont_method();
#endif
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, kP384MontGX, sizeof(kP384MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP384MontGY, sizeof(kP384MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP384FieldR, sizeof(kP384FieldR));
OPENSSL_memcpy(out->b.words, kP384MontB, sizeof(kP384MontB));
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
out->conv_form = POINT_CONVERSION_UNCOMPRESSED;
out->mutable_ec_group = 0;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p521) {
out->curve_name = NID_secp521r1;
out->comment = "NIST P-521";
// 1.3.132.0.35
static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
OPENSSL_memcpy(out->oid, kOIDP521, sizeof(kOIDP521));
out->oid_len = sizeof(kOIDP521);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP521Field),
kP521Field, kP521FieldRR, kP521FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP521Order),
kP521Order, kP521OrderRR, kP521OrderN0);
#if !defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistp521_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP521GX, sizeof(kP521GX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP521GY, sizeof(kP521GY));
out->generator.raw.Z.words[0] = 1;
OPENSSL_memcpy(out->b.words, kP521B, sizeof(kP521B));
#else
out->meth = EC_GFp_mont_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP521MontGX, sizeof(kP521MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP521MontGY, sizeof(kP521MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP521FieldR, sizeof(kP521FieldR));
OPENSSL_memcpy(out->b.words, kP521MontB, sizeof(kP521MontB));
#endif
out->generator.group = out;
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
out->conv_form = POINT_CONVERSION_UNCOMPRESSED;
out->mutable_ec_group = 0;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_secp256k1) {
out->curve_name = NID_secp256k1;
out->comment = "secp256k1";
// 1.3.132.0.10
static const uint8_t kOIDP256K1[] = {0x2b, 0x81, 0x04, 0x00, 0x0a};
OPENSSL_memcpy(out->oid, kOIDP256K1, sizeof(kOIDP256K1));
out->oid_len = sizeof(kOIDP256K1);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(ksecp256k1Field),
ksecp256k1Field, ksecp256k1FieldRR, ksecp256k1FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(ksecp256k1Order),
ksecp256k1Order, ksecp256k1OrderRR, ksecp256k1OrderN0);
out->meth = EC_GFp_mont_method();
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, ksecp256k1MontGX, sizeof(ksecp256k1MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, ksecp256k1MontGY, sizeof(ksecp256k1MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, ksecp256k1FieldR, sizeof(ksecp256k1FieldR));
OPENSSL_memcpy(out->b.words, ksecp256k1MontB, sizeof(ksecp256k1MontB));
ec_group_set_a_zero(out);
out->has_order = 1;
out->field_greater_than_order = 1;
out->conv_form = POINT_CONVERSION_UNCOMPRESSED;
out->mutable_ec_group = 0;
}
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx) {
if (BN_num_bytes(p) > EC_MAX_BYTES) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
return NULL;
}
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return NULL;
}
}
// Historically, |a| and |b| were not required to be fully reduced.
// TODO(davidben): Can this be removed?
EC_GROUP *ret = NULL;
BN_CTX_start(ctx);
BIGNUM *a_reduced = BN_CTX_get(ctx);
BIGNUM *b_reduced = BN_CTX_get(ctx);
if (a_reduced == NULL || b_reduced == NULL ||
!BN_nnmod(a_reduced, a, p, ctx) ||
!BN_nnmod(b_reduced, b, p, ctx)) {
goto err;
}
ret = OPENSSL_zalloc(sizeof(EC_GROUP));
if (ret == NULL) {
return NULL;
}
ret->mutable_ec_group = 1;
ret->conv_form = POINT_CONVERSION_UNCOMPRESSED;
ret->meth = EC_GFp_mont_method();
bn_mont_ctx_init(&ret->field);
bn_mont_ctx_init(&ret->order);
ret->generator.group = ret;
if (!ec_GFp_simple_group_set_curve(ret, p, a_reduced, b_reduced, ctx)) {
EC_GROUP_free(ret);
ret = NULL;
goto err;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
const BIGNUM *order, const BIGNUM *cofactor) {
if (group->curve_name != NID_undef || group->has_order ||
EC_GROUP_cmp(generator->group, group, NULL)) {
// |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by
// |EC_GROUP_new_curve_GFp| and may only used once on each group.
// |generator| must be of the same |EC_GROUP| as |group|.
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (BN_num_bytes(order) > EC_MAX_BYTES) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
return 0;
}
// Require a cofactor of one for custom curves, which implies prime order.
if (!BN_is_one(cofactor)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR);
return 0;
}
// Require that p < 2×order. This simplifies some ECDSA operations.
//
// Note any curve which did not satisfy this must have been invalid or use a
// tiny prime (less than 17). See the proof in |field_element_to_scalar| in
// the ECDSA implementation.
int ret = 0;
BIGNUM *tmp = BN_new();
if (tmp == NULL ||
!BN_lshift1(tmp, order)) {
goto err;
}
if (BN_cmp(tmp, &group->field.N) <= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
goto err;
}
EC_AFFINE affine;
if (!ec_jacobian_to_affine(group, &affine, &generator->raw) ||
!BN_MONT_CTX_set(&group->order, order, NULL)) {
goto err;
}
group->field_greater_than_order = BN_cmp(&group->field.N, order) > 0;
group->generator.raw.X = affine.X;
group->generator.raw.Y = affine.Y;
// |raw.Z| was set to 1 by |EC_GROUP_new_curve_GFp|.
group->has_order = 1;
ret = 1;
err:
BN_free(tmp);
return ret;
}
EC_GROUP *EC_GROUP_new_by_curve_name(int nid) {
switch (nid) {
case NID_secp224r1:
return (EC_GROUP *)EC_group_p224();
case NID_X9_62_prime256v1:
return (EC_GROUP *)EC_group_p256();
case NID_secp384r1:
return (EC_GROUP *)EC_group_p384();
case NID_secp521r1:
return (EC_GROUP *)EC_group_p521();
case NID_secp256k1:
return (EC_GROUP *)EC_group_secp256k1();
default:
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
return NULL;
}
}
EC_GROUP *EC_GROUP_new_by_curve_name_mutable(int nid) {
EC_GROUP *ret = NULL;
switch (nid) {
case NID_secp224r1:
ret = (EC_GROUP *)OPENSSL_memdup(EC_group_p224(), sizeof(EC_GROUP));
break;
case NID_X9_62_prime256v1:
ret = (EC_GROUP *)OPENSSL_memdup(EC_group_p256(), sizeof(EC_GROUP));
break;
case NID_secp384r1:
ret = (EC_GROUP *)OPENSSL_memdup(EC_group_p384(), sizeof(EC_GROUP));
break;
case NID_secp521r1:
ret = (EC_GROUP *)OPENSSL_memdup(EC_group_p521(), sizeof(EC_GROUP));
break;
case NID_secp256k1:
ret = (EC_GROUP *)OPENSSL_memdup(EC_group_secp256k1(), sizeof(EC_GROUP));
break;
default:
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
return NULL;
}
if (ret == NULL) {
return NULL;
}
ret->mutable_ec_group = 1;
return ret;
}
void EC_GROUP_free(EC_GROUP *group) {
if (group == NULL) {
return;
}
if (!group->mutable_ec_group) {
if (group->curve_name != NID_undef) {
// Built-in curves are static.
return;
}
}
bn_mont_ctx_cleanup(&group->order);
bn_mont_ctx_cleanup(&group->field);
OPENSSL_free(group);
}
EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) {
if (a == NULL) {
return NULL;
}
if (!a->mutable_ec_group) {
if (a->curve_name != NID_undef) {
// Built-in curves are static.
return (EC_GROUP *)a;
}
}
// Directly duplicate the |EC_GROUP| if it was dynamically allocated. We do a
// shallow copy first, then deep copy the elements that have nested pointer
// redirections.
EC_GROUP *ret = OPENSSL_memdup(a, sizeof(EC_GROUP));
if (ret == NULL) {
return NULL;
}
ret->generator.group = ret;
bn_mont_ctx_init(&ret->field);
bn_mont_ctx_init(&ret->order);
if (!BN_MONT_CTX_copy(&ret->field, &a->field) ||
!BN_MONT_CTX_copy(&ret->order, &a->order)) {
EC_GROUP_free(ret);
ret = NULL;
}
return ret;
}
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) {
// Note this function returns 0 if equal and non-zero otherwise.
if (a == b) {
return 0;
}
// Built-in static curves may be compared by curve name alone.
if (a->curve_name != b->curve_name) {
return 1;
}
if (a->curve_name != NID_undef) {
// |NID_undef| indicates a custom curve. If we're comparing custom curves
// we fall through and compare the entire curve structure below.
return 0;
}
// |a| and |b| are both custom curves. If both are incomplete (due to legacy
// OpenSSL mistakes, custom curve construction is sadly done in two parts
// |EC_GROUP_new_curve_GFp| -> |EC_GROUP_set_generator|), we only compare
// the parts that are available.
return a->meth != b->meth || a->has_order != b->has_order ||
BN_cmp(&a->field.N, &b->field.N) != 0 ||
!ec_felem_equal(a, &a->a, &b->a) || !ec_felem_equal(a, &a->b, &b->b) ||
// We compare the rest of the entire curve structure if both |a| and
// |b| are complete.
(a->has_order && b->has_order &&
(BN_cmp(&a->order.N, &b->order.N) != 0 ||
!ec_GFp_simple_points_equal(a, &a->generator.raw,
&b->generator.raw)));
}
const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) {
return group->has_order ? &group->generator : NULL;
}
const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) {
assert(group->has_order);
return &group->order.N;
}
int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) {
if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) {
return 0;
}
return 1;
}
int EC_GROUP_order_bits(const EC_GROUP *group) {
return BN_num_bits(&group->order.N);
}
int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor,
BN_CTX *ctx) {
// All |EC_GROUP|s have cofactor 1.
return BN_set_word(cofactor, 1);
}
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a,
BIGNUM *out_b, BN_CTX *ctx) {
return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b);
}
int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; }
unsigned EC_GROUP_get_degree(const EC_GROUP *group) {
return BN_num_bits(&group->field.N);
}
const char *EC_curve_nid2nist(int nid) {
switch (nid) {
case NID_secp224r1:
return "P-224";
case NID_X9_62_prime256v1:
return "P-256";
case NID_secp384r1:
return "P-384";
case NID_secp521r1:
return "P-521";
}
return NULL;
}
int EC_curve_nist2nid(const char *name) {
if (strcmp(name, "P-224") == 0) {
return NID_secp224r1;
}
if (strcmp(name, "P-256") == 0) {
return NID_X9_62_prime256v1;
}
if (strcmp(name, "P-384") == 0) {
return NID_secp384r1;
}
if (strcmp(name, "P-521") == 0) {
return NID_secp521r1;
}
return NID_undef;
}
EC_POINT *EC_POINT_new(const EC_GROUP *group) {
if (group == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
EC_POINT *ret = OPENSSL_malloc(sizeof *ret);
if (ret == NULL) {
return NULL;
}
ret->group = EC_GROUP_dup(group);
ec_GFp_simple_point_init(&ret->raw);
return ret;
}
static void ec_point_free(EC_POINT *point, int free_group) {
if (!point) {
return;
}
if (free_group) {
EC_GROUP_free(point->group);
}
OPENSSL_free(point);
}
void EC_POINT_free(EC_POINT *point) {
ec_point_free(point, 1 /* free group */);
}
void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); }
int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) {
if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (dest == src) {
return 1;
}
ec_GFp_simple_point_copy(&dest->raw, &src->raw);
return 1;
}
EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) {
if (a == NULL) {
return NULL;
}
EC_POINT *ret = EC_POINT_new(group);
if (ret == NULL || !EC_POINT_copy(ret, a)) {
EC_POINT_free(ret);
return NULL;
}
return ret;
}
int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
ec_GFp_simple_point_set_to_infinity(group, &point->raw);
return 1;
}
int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_GFp_simple_is_at_infinity(group, &point->raw);
}
int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_GFp_simple_is_on_curve(group, &point->raw);
}
int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, a->group, NULL) != 0 ||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return -1;
}
// Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality.
return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1;
}
int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x,
BIGNUM *y, BN_CTX *ctx) {
if (group->meth->point_get_affine_coordinates == 0) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
EC_FELEM x_felem, y_felem;
if (!group->meth->point_get_affine_coordinates(group, &point->raw,
x == NULL ? NULL : &x_felem,
y == NULL ? NULL : &y_felem) ||
(x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) ||
(y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) {
return 0;
}
return 1;
}
int EC_POINT_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y,
BN_CTX *ctx) {
return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx);
}
void ec_affine_to_jacobian(const EC_GROUP *group, EC_JACOBIAN *out,
const EC_AFFINE *p) {
out->X = p->X;
out->Y = p->Y;
out->Z = *ec_felem_one(group);
}
int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out,
const EC_JACOBIAN *p) {
return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y);
}
int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out,
const EC_JACOBIAN *in, size_t num) {
if (group->meth->jacobian_to_affine_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->jacobian_to_affine_batch(group, out, in, num);
}
int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out,
const EC_FELEM *x, const EC_FELEM *y) {
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
// Check if the point is on the curve.
EC_FELEM lhs, rhs;
felem_sqr(group, &lhs, y); // lhs = y^2
felem_sqr(group, &rhs, x); // rhs = x^2
ec_felem_add(group, &rhs, &rhs, &group->a); // rhs = x^2 + a
felem_mul(group, &rhs, &rhs, x); // rhs = x^3 + ax
ec_felem_add(group, &rhs, &rhs, &group->b); // rhs = x^3 + ax + b
if (!ec_felem_equal(group, &lhs, &rhs)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE);
// In the event of an error, defend against the caller not checking the
// return value by setting a known safe value. Note this may not be possible
// if the caller is in the process of constructing an arbitrary group and
// the generator is missing.
if (group->has_order) {
out->X = group->generator.raw.X;
out->Y = group->generator.raw.Y;
}
return 0;
}
out->X = *x;
out->Y = *y;
return 1;
}
int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (x == NULL || y == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
EC_FELEM x_felem, y_felem;
EC_AFFINE affine;
if (!ec_bignum_to_felem(group, &x_felem, x) ||
!ec_bignum_to_felem(group, &y_felem, y) ||
!ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) {
// In the event of an error, defend against the caller not checking the
// return value by setting a known safe value.
ec_set_to_safe_point(group, &point->raw);
return 0;
}
ec_affine_to_jacobian(group, &point->raw, &affine);
return 1;
}
int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y,
BN_CTX *ctx) {
return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx);
}
int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
EC_GROUP_cmp(group, a->group, NULL) != 0 ||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
group->meth->add(group, &r->raw, &a->raw, &b->raw);
return 1;
}
int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
EC_GROUP_cmp(group, a->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
group->meth->dbl(group, &r->raw, &a->raw);
return 1;
}
int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, a->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
ec_GFp_simple_invert(group, &a->raw);
return 1;
}
static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
const BIGNUM *in, BN_CTX *ctx) {
if (ec_bignum_to_scalar(group, out, in)) {
return 1;
}
ERR_clear_error();
// This is an unusual input, so we do not guarantee constant-time processing.
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
int ok = tmp != NULL &&
BN_nnmod(tmp, in, EC_GROUP_get0_order(group), ctx) &&
ec_bignum_to_scalar(group, out, tmp);
BN_CTX_end(ctx);
return ok;
}
int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *g_scalar, const EC_POINT *p,
const BIGNUM *p_scalar, BN_CTX *ctx) {
// Previously, this function set |r| to the point at infinity if there was
// nothing to multiply. But, nobody should be calling this function with
// nothing to multiply in the first place.
if ((g_scalar == NULL && p_scalar == NULL) ||
(p == NULL) != (p_scalar == NULL)) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
(p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
int ret = 0;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
new_ctx = BN_CTX_new();
if (new_ctx == NULL) {
goto err;
}
ctx = new_ctx;
}
// If both |g_scalar| and |p_scalar| are non-NULL,
// |ec_point_mul_scalar_public| would share the doublings between the two
// products, which would be more efficient. However, we conservatively assume
// the caller needs a constant-time operation. (ECDSA verification does not
// use this function.)
//
// Previously, the low-level constant-time multiplication function aligned
// with this function's calling convention, but this was misleading. Curves
// which combined the two multiplications did not avoid the doubling case
// in the incomplete addition formula and were not constant-time.
if (g_scalar != NULL) {
EC_SCALAR scalar;
if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) ||
!ec_point_mul_scalar_base(group, &r->raw, &scalar)) {
goto err;
}
}
if (p_scalar != NULL) {
EC_SCALAR scalar;
EC_JACOBIAN tmp;
if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) ||
!ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) {
goto err;
}
if (g_scalar == NULL) {
OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_JACOBIAN));
} else {
group->meth->add(group, &r->raw, &r->raw, &tmp);
}
}
ret = 1;
err:
BN_CTX_free(new_ctx);
return ret;
}
int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
boringssl_ensure_ecc_self_test();
SET_DIT_AUTO_RESET;
return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx);
}
int ec_point_mul_scalar_public(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *g_scalar, const EC_JACOBIAN *p,
const EC_SCALAR *p_scalar) {
if (g_scalar == NULL || p_scalar == NULL || p == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (group->meth->mul_public == NULL) {
return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1);
}
group->meth->mul_public(group, r, g_scalar, p, p_scalar);
return 1;
}
int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *g_scalar,
const EC_JACOBIAN *points,
const EC_SCALAR *scalars, size_t num) {
if (group->meth->mul_public_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->mul_public_batch(group, r, g_scalar, points, scalars,
num);
}
int ec_point_mul_scalar(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p, const EC_SCALAR *scalar) {
SET_DIT_AUTO_RESET;
if (p == NULL || scalar == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
group->meth->mul(group, r, p, scalar);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication.
if (!ec_GFp_simple_is_on_curve(group, r)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *scalar) {
SET_DIT_AUTO_RESET;
if (scalar == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
group->meth->mul_base(group, r, scalar);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication. This can only
// happen on bug or CPU fault, so it is okay to leak this information (if the
// computed point is on the curve or not). The alternative would be to
// proceed with bad data.
if (!constant_time_declassify_int(ec_GFp_simple_is_on_curve(group, r))) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p0, const EC_SCALAR *scalar0,
const EC_JACOBIAN *p1, const EC_SCALAR *scalar1,
const EC_JACOBIAN *p2,
const EC_SCALAR *scalar2) {
if (group->meth->mul_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2);