diff --git a/gklearn/kernels/path_up_to_h.py b/gklearn/kernels/path_up_to_h.py index 4bc03d83ca..241b8ddf52 100644 --- a/gklearn/kernels/path_up_to_h.py +++ b/gklearn/kernels/path_up_to_h.py @@ -29,6 +29,50 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func is None def __init__(self, **kwargs): + """Initialize the kernel. + + Parameters + ---------- + node_labels : list of strings, optional + The name list of node labels in the graphs. The default is []. + + edge_labels : list of strings, optional + The name list of edge labels in the graphs. The default is []. + + depth : int, optional + The maximum depth of paths to be considered. The default is 10. + + k_func : string, optional + The kernel function applied using different notions of fingerprint + similarity. The default is 'MinMax'. + + compute_method : string, optional + The method to compute the kernel. The default is 'trie'. + + ds_infos : dict, optional + The dataset information. The default is {}. + + save_paths : boolean, optional + Whether to save the paths of graphs. The default is True. + + parallel : boolean, optional + Whether to use parallelization. The default is True. + + n_jobs : int, optional + The number of jobs to run in parallel. The default is 1. + + chunksize : int, optional + The chunksize for parallelization. The default is 100. + + normalize : boolean, optional + Whether to normalize the kernel matrix. The default is False. + + copy_graphs : boolean, optional + Whether to copy the input graphs. The default is True. + + verbose : int, optional + The verbosity level. The default is 0. + """ GraphKernel.__init__( self, **{ k: kwargs.get(k) for k in